These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20071374)

  • 21. Target enzymes are stabilized by AfrLEA6 and a gain of α-helix coincides with protection by a group 3 LEA protein during incremental drying.
    LeBlanc BM; Hand SC
    Biochim Biophys Acta Proteins Proteom; 2021 Jun; 1869(6):140642. PubMed ID: 33647452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying.
    Gilles GJ; Hines KM; Manfre AJ; Marcotte WR
    Plant Physiol Biochem; 2007; 45(6-7):389-99. PubMed ID: 17544288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy.
    Kimura T; Maeda A; Nishiguchi S; Ishimori K; Morishima I; Konno T; Goto Y; Takahashi S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13391-6. PubMed ID: 18757727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability.
    Molla AR; Mandal DK
    Biochimie; 2013 Feb; 95(2):204-14. PubMed ID: 23022144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OsLEA1a, a new Em-like protein of cereal plants.
    Shih MD; Huang LT; Wei FJ; Wu MT; Hoekstra FA; Hsing YI
    Plant Cell Physiol; 2010 Dec; 51(12):2132-44. PubMed ID: 21097897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional and Conformational Plasticity of an Animal Group 1 LEA Protein.
    Janis B; Belott C; Brockman T; Menze MA
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates.
    Wolkers WF; van Kilsdonk MG; Hoekstra FA
    Biochim Biophys Acta; 1998 Sep; 1425(1):127-36. PubMed ID: 9813280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The diastereomeric assembly of polylysine is the low-volume pathway for preferential formation of beta-sheet aggregates.
    Dzwolak W; Ravindra R; Nicolini C; Jansen R; Winter R
    J Am Chem Soc; 2004 Mar; 126(12):3762-8. PubMed ID: 15038729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations.
    Schwaighofer A; Alcaráz MR; Araman C; Goicoechea H; Lendl B
    Sci Rep; 2016 Sep; 6():33556. PubMed ID: 27633337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The N-Terminal Region of Soybean PM1 Protein Protects Liposomes during Freeze-Thaw.
    Chen L; Sun Y; Liu Y; Zou Y; Huang J; Zheng Y; Liu G
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibrational circular dichroism study of polypeptide model-membrane systems.
    Novotná P; Urbanová M
    Anal Biochem; 2012 Aug; 427(2):211-8. PubMed ID: 22484038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes.
    Bremer A; Wolff M; Thalhammer A; Hincha DK
    FEBS J; 2017 Mar; 284(6):919-936. PubMed ID: 28109185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of selected LEA proteins from Arabidopsis thaliana in yeast and in vitro.
    Dang NX; Popova AV; Hundertmark M; Hincha DK
    Planta; 2014 Aug; 240(2):325-36. PubMed ID: 24841476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana.
    Hundertmark M; Hincha DK
    BMC Genomics; 2008 Mar; 9():118. PubMed ID: 18318901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes.
    Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H
    Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins.
    Boucher V; Buitink J; Lin X; Boudet J; Hoekstra FA; Hundertmark M; Renard D; Leprince O
    Plant Cell Environ; 2010 Mar; 33(3):418-30. PubMed ID: 20002332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance.
    Hincha DK; Thalhammer A
    Biochem Soc Trans; 2012 Oct; 40(5):1000-3. PubMed ID: 22988854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles.
    Wise MJ
    BMC Bioinformatics; 2003 Oct; 4():52. PubMed ID: 14583099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LEA proteins during water stress: not just for plants anymore.
    Hand SC; Menze MA; Toner M; Boswell L; Moore D
    Annu Rev Physiol; 2011; 73():115-34. PubMed ID: 21034219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the structural organization and thermal stability of two spermadhesins. Calorimetric, circular dichroic and Fourier-transform infrared spectroscopic studies.
    Menéndez M; Gasset M; Laynez J; López-Zumel C; Usobiaga P; Töpfer-Petersen E; Calvete JJ
    Eur J Biochem; 1995 Dec; 234(3):887-96. PubMed ID: 8575449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.