These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20071510)

  • 1. Differential effects of Tau on the integrity and function of neurons essential for learning in Drosophila.
    Kosmidis S; Grammenoudi S; Papanikolopoulou K; Skoulakis EM
    J Neurosci; 2010 Jan; 30(2):464-77. PubMed ID: 20071510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation differentiates tau-dependent neuronal toxicity and dysfunction.
    Papanikolopoulou K; Kosmidis S; Grammenoudi S; Skoulakis EM
    Biochem Soc Trans; 2010 Aug; 38(4):981-7. PubMed ID: 20658989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons.
    Mershin A; Pavlopoulos E; Fitch O; Braden BC; Nanopoulos DV; Skoulakis EM
    Learn Mem; 2004; 11(3):277-87. PubMed ID: 15169857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin.
    Pauls D; Selcho M; Gendre N; Stocker RF; Thum AS
    J Neurosci; 2010 Aug; 30(32):10655-66. PubMed ID: 20702697
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Papanikolopoulou K; Roussou IG; Gouzi JY; Samiotaki M; Panayotou G; Turin L; Skoulakis EMC
    J Neurosci; 2019 Oct; 39(42):8315-8329. PubMed ID: 31488613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila.
    Li W; Cressy M; Qin H; Fulga T; Van Vactor D; Dubnau J
    J Neurosci; 2013 Mar; 33(13):5821-33. PubMed ID: 23536094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Conserved Cytoskeletal Signaling Cascade Mediates Neurotoxicity of FTDP-17 Tau Mutations
    Bardai FH; Wang L; Mutreja Y; Yenjerla M; Gamblin TC; Feany MB
    J Neurosci; 2018 Jan; 38(1):108-119. PubMed ID: 29138281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Interactions of Tau Phosphorylation Sites That Mediate Toxicity and Deficient Learning in
    Keramidis I; Vourkou E; Papanikolopoulou K; Skoulakis EMC
    Front Mol Neurosci; 2020; 13():569520. PubMed ID: 33192295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis.
    Wang J; Ma X; Yang JS; Zheng X; Zugates CT; Lee CH; Lee T
    Neuron; 2004 Sep; 43(5):663-72. PubMed ID: 15339648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule affinity-regulating kinase 4 with an Alzheimer's disease-related mutation promotes tau accumulation and exacerbates neurodegeneration.
    Oba T; Saito T; Asada A; Shimizu S; Iijima KM; Ando K
    J Biol Chem; 2020 Dec; 295(50):17138-17147. PubMed ID: 33020179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations.
    Alonso Adel C; Mederlyova A; Novak M; Grundke-Iqbal I; Iqbal K
    J Biol Chem; 2004 Aug; 279(33):34873-81. PubMed ID: 15190058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model.
    Chatterjee S; Sang TK; Lawless GM; Jackson GR
    Hum Mol Genet; 2009 Jan; 18(1):164-77. PubMed ID: 18930955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning.
    Hoopfer ED; Penton A; Watts RJ; Luo L
    J Neurosci; 2008 Jun; 28(24):6092-103. PubMed ID: 18550751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced expression of dMyc mitigates Tau
    Pragati ; Chanu SI; Sarkar S
    Neurosci Lett; 2020 Jan; 715():134622. PubMed ID: 31715291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.
    Hannan SB; Dräger NM; Rasse TM; Voigt A; Jahn TR
    J Neurochem; 2016 Apr; 137(1):12-25. PubMed ID: 26756400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a
    Bukhari H; Nithianandam V; Battaglia RA; Cicalo A; Sarkar S; Comjean A; Hu Y; Leventhal MJ; Dong X; Feany MB
    Genome Res; 2024 May; 34(4):590-605. PubMed ID: 38599684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy.
    Sealey MA; Vourkou E; Cowan CM; Bossing T; Quraishe S; Grammenoudi S; Skoulakis EMC; Mudher A
    Neurobiol Dis; 2017 Sep; 105():74-83. PubMed ID: 28502805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy.
    Boekhoorn K; Terwel D; Biemans B; Borghgraef P; Wiegert O; Ramakers GJ; de Vos K; Krugers H; Tomiyama T; Mori H; Joels M; van Leuven F; Lucassen PJ
    J Neurosci; 2006 Mar; 26(13):3514-23. PubMed ID: 16571759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pattern of human tau phosphorylation is the result of priming and feedback events in primary hippocampal neurons.
    Bertrand J; Plouffe V; Sénéchal P; Leclerc N
    Neuroscience; 2010 Jun; 168(2):323-34. PubMed ID: 20394726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of the Drosophila tau homolog.
    Heidary G; Fortini ME
    Mech Dev; 2001 Oct; 108(1-2):171-8. PubMed ID: 11578871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.