These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20071515)

  • 1. The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem.
    Brocard F; Ryczko D; Fénelon K; Hatem R; Gonzales D; Auclair F; Dubuc R
    J Neurosci; 2010 Jan; 30(2):523-33. PubMed ID: 20071515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
    Ryczko D; Auclair F; Cabelguen JM; Dubuc R
    J Comp Neurol; 2016 May; 524(7):1361-83. PubMed ID: 26470600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chapter 4--supraspinal control of locomotion: the mesencephalic locomotor region.
    Le Ray D; Juvin L; Ryczko D; Dubuc R
    Prog Brain Res; 2011; 188():51-70. PubMed ID: 21333802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neuronal substrate for a state-dependent modulation of sensory inputs in the brainstem.
    Le Ray D; Juvin L; Boutin T; Auclair F; Dubuc R
    Eur J Neurosci; 2010 Jul; 32(1):53-9. PubMed ID: 20576031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forebrain dopamine neurons project down to a brainstem region controlling locomotion.
    Ryczko D; Grätsch S; Auclair F; Dubé C; Bergeron S; Alpert MH; Cone JJ; Roitman MF; Alford S; Dubuc R
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):E3235-42. PubMed ID: 23918379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region.
    Brocard F; Dubuc R
    J Neurophysiol; 2003 Sep; 90(3):1714-27. PubMed ID: 12736238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parallel cholinergic brainstem pathway for enhancing locomotor drive.
    Smetana R; Juvin L; Dubuc R; Alford S
    Nat Neurosci; 2010 Jun; 13(6):731-8. PubMed ID: 20473293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal inputs from lateral columns to reticulospinal neurons in lampreys.
    Vinay L; Bongianni F; Ohta Y; Grillner S; Dubuc R
    Brain Res; 1998 Oct; 808(2):279-93. PubMed ID: 9767174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nigral Glutamatergic Neurons Control the Speed of Locomotion.
    Ryczko D; Grätsch S; Schläger L; Keuyalian A; Boukhatem Z; Garcia C; Auclair F; Büschges A; Dubuc R
    J Neurosci; 2017 Oct; 37(40):9759-9770. PubMed ID: 28924005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys.
    Le Ray D; Brocard F; Bourcier-Lucas C; Auclair F; Lafaille P; Dubuc R
    Eur J Neurosci; 2003 Jan; 17(1):137-48. PubMed ID: 12534977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibulo-reticular projections in adult lamprey: their role in locomotion.
    Pflieger JF; Dubuc R
    Neuroscience; 2004; 129(3):817-29. PubMed ID: 15541903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys.
    Sirota MG; Di Prisco GV; Dubuc R
    Eur J Neurosci; 2000 Nov; 12(11):4081-92. PubMed ID: 11069605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of synaptic inputs to sustained depolarizations in reticulospinal neurons.
    Antri M; Fénelon K; Dubuc R
    J Neurosci; 2009 Jan; 29(4):1140-51. PubMed ID: 19176823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.
    Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region.
    Shefchyk SJ; Jordan LM
    J Neurophysiol; 1985 Jun; 53(6):1345-55. PubMed ID: 4009222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region.
    Noga BR; Kriellaars DJ; Brownstone RM; Jordan LM
    J Neurophysiol; 2003 Sep; 90(3):1464-78. PubMed ID: 12634275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.