BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20071605)

  • 21. MicroRNAs expression patterns in the response of poplar woody root to bending stress.
    Rossi M; Trupiano D; Tamburro M; Ripabelli G; Montagnoli A; Chiatante D; Scippa GS
    Planta; 2015 Jul; 242(1):339-51. PubMed ID: 25963516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen.
    Felten J; Vahala J; Love J; Gorzsás A; Rüggeberg M; Delhomme N; Leśniewska J; Kangasjärvi J; Hvidsten TR; Mellerowicz EJ; Sundberg B
    New Phytol; 2018 May; 218(3):999-1014. PubMed ID: 29528503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A PtrLBD39-mediated transcriptional network regulates tension wood formation in
    Yu J; Zhou C; Li D; Li S; Jimmy Lin YC; Wang JP; Chiang VL; Li W
    Plant Commun; 2022 Jan; 3(1):100250. PubMed ID: 35059630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees.
    Bhandari S; Fujino T; Thammanagowda S; Zhang D; Xu F; Joshi CP
    Planta; 2006 Sep; 224(4):828-37. PubMed ID: 16575593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods.
    Higaki A; Yoshinaga A; Takabe K
    Tree Physiol; 2017 Dec; 37(12):1767-1775. PubMed ID: 29177443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.
    Bünder A; Sundman O; Mahboubi A; Persson S; Mansfield SD; Rüggeberg M; Niittylä T
    Plant J; 2020 Aug; 103(5):1858-1868. PubMed ID: 32526794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-cellulosic polysaccharide distribution during G-layer formation in poplar tension wood fibers: abundance of rhamnogalacturonan I and arabinogalactan proteins but no evidence of xyloglucan.
    Guedes FTP; Laurans F; Quemener B; Assor C; Lainé-Prade V; Boizot N; Vigouroux J; Lesage-Descauses MC; Leplé JC; Déjardin A; Pilate G
    Planta; 2017 Nov; 246(5):857-878. PubMed ID: 28699115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation.
    Kölln K; Grotkopp I; Burghammer M; Roth SV; Funari SS; Dommach M; Müller M
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):739-44. PubMed ID: 16239742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Structural Origins of Wood Cell Wall Toughness.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Adv Mater; 2020 Apr; 32(16):e1907693. PubMed ID: 32115772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of the structural change during deformation in Cryptomeria japonica by time-resolved synchrotron small-angle X-ray scattering.
    Kamiyama T; Suzuki H; Sugiyama J
    J Struct Biol; 2005 Jul; 151(1):1-11. PubMed ID: 15963733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus.
    Johnson D; Eckart P; Alsamadisi N; Noble H; Martin C; Spicer R
    Am J Bot; 2018 Feb; 105(2):186-196. PubMed ID: 29578291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood.
    Abbas M; Peszlen I; Shi R; Kim H; Katahira R; Kafle K; Xiang Z; Huang X; Min D; Mohamadamin M; Yang C; Dai X; Yan X; Park S; Li Y; Kim SH; Davis M; Ralph J; Sederoff RR; Chiang VL; Li Q
    Tree Physiol; 2020 Jan; 40(1):73-89. PubMed ID: 31211386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling.
    Funahashi R; Okita Y; Hondo H; Zhao M; Saito T; Isogai A
    Biomacromolecules; 2017 Nov; 18(11):3687-3694. PubMed ID: 28954511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress.
    Roussel JR; Clair B
    Tree Physiol; 2015 Dec; 35(12):1366-77. PubMed ID: 26427915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignification and tension wood.
    Pilate G; Chabbert B; Cathala B; Yoshinaga A; Leplé JC; Laurans F; Lapierre C; Ruel K
    C R Biol; 2004; 327(9-10):889-901. PubMed ID: 15587080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development.
    Unda F; Kim H; Hefer C; Ralph J; Mansfield SD
    Plant Biotechnol J; 2017 Jul; 15(7):865-878. PubMed ID: 27998032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning and functional analysis of the Populus deltoides remorin gene PdREM.
    Li S; Su X; Zhang B; Huang Q; Hu Z; Lu M
    Tree Physiol; 2013 Oct; 33(10):1111-21. PubMed ID: 24072517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation.
    Coutand C; Fournier M; Moulia B
    Plant Physiol; 2007 Jun; 144(2):1166-80. PubMed ID: 17468227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.