These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 20072118)
1. The role of the striatum in compulsive behavior in intact and orbitofrontal-cortex-lesioned rats: possible involvement of the serotonergic system. Schilman EA; Klavir O; Winter C; Sohr R; Joel D Neuropsychopharmacology; 2010 Mar; 35(4):1026-39. PubMed ID: 20072118 [TBL] [Abstract][Full Text] [Related]
2. 'Compulsive' lever-pressing in rats is attenuated by the serotonin re-uptake inhibitors paroxetine and fluvoxamine but not by the tricyclic antidepressant desipramine or the anxiolytic diazepam. Joel D; Ben-Amir E; Doljansky J; Flaisher S Behav Pharmacol; 2004 May; 15(3):241-52. PubMed ID: 15187582 [TBL] [Abstract][Full Text] [Related]
3. Role of the orbital cortex and of the serotonergic system in a rat model of obsessive compulsive disorder. Joel D; Doljansky J; Roz N; Rehavi M Neuroscience; 2005; 130(1):25-36. PubMed ID: 15561422 [TBL] [Abstract][Full Text] [Related]
4. Strain differences in 'compulsive' lever-pressing. Brimberg L; Flaisher-Grinberg S; Schilman EA; Joel D Behav Brain Res; 2007 Apr; 179(1):141-51. PubMed ID: 17320982 [TBL] [Abstract][Full Text] [Related]
5. The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive-compulsive disorder. Flaisher-Grinberg S; Klavir O; Joel D Int J Neuropsychopharmacol; 2008 Sep; 11(6):811-25. PubMed ID: 18339223 [TBL] [Abstract][Full Text] [Related]
6. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces 'compulsive' lever-pressing in rats. Klavir O; Flash S; Winter C; Joel D Exp Neurol; 2009 Jan; 215(1):101-9. PubMed ID: 18951894 [TBL] [Abstract][Full Text] [Related]
7. 'Compulsive' lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Joel D; Doljansky J; Schiller D Eur J Neurosci; 2005 Apr; 21(8):2252-62. PubMed ID: 15869522 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Yin HH; Knowlton BJ; Balleine BW Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer devaluation and extinction in rats. West EA; Forcelli PA; McCue DL; Malkova L Behav Brain Res; 2013 Jun; 246():10-4. PubMed ID: 23458741 [TBL] [Abstract][Full Text] [Related]
10. The role of the cholinergic system in the signal attenuation rat model of obsessive-compulsive disorder. Yankelevitch-Yahav R; Joel D Psychopharmacology (Berl); 2013 Nov; 230(1):37-48. PubMed ID: 23685859 [TBL] [Abstract][Full Text] [Related]
11. Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive-compulsive disorder. Joel D; Doljansky J Neuropsychopharmacology; 2003 Jan; 28(1):77-85. PubMed ID: 12496943 [TBL] [Abstract][Full Text] [Related]
12. The role of the subthalamic nucleus in 'compulsive' behavior in rats. Winter C; Flash S; Klavir O; Klein J; Sohr R; Joel D Eur J Neurosci; 2008 Apr; 27(8):1902-11. PubMed ID: 18412611 [TBL] [Abstract][Full Text] [Related]
13. The role of NMDA receptors in the signal attenuation rat model of obsessive-compulsive disorder. Albelda N; Bar-On N; Joel D Psychopharmacology (Berl); 2010 May; 210(1):13-24. PubMed ID: 20238210 [TBL] [Abstract][Full Text] [Related]
14. Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Joel D; Avisar A Behav Brain Res; 2001 Aug; 123(1):77-87. PubMed ID: 11377731 [TBL] [Abstract][Full Text] [Related]
15. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. Clarke HF; Robbins TW; Roberts AC J Neurosci; 2008 Oct; 28(43):10972-82. PubMed ID: 18945905 [TBL] [Abstract][Full Text] [Related]
17. The effects of temporary inactivation of the orbital cortex in the signal attenuation rat model of obsessive compulsive disorder. Joel D; Klavir O Behav Neurosci; 2006 Aug; 120(4):976-83. PubMed ID: 16893303 [TBL] [Abstract][Full Text] [Related]
18. Responsiveness of 5-HT(1A) and 5-HT2 receptors in the rat orbitofrontal cortex after long-term serotonin reuptake inhibition. El Mansari M; Blier P J Psychiatry Neurosci; 2005 Jul; 30(4):268-74. PubMed ID: 16049570 [TBL] [Abstract][Full Text] [Related]
19. Interaction of the basolateral amygdala and orbitofrontal cortex is critical for drug context-induced reinstatement of cocaine-seeking behavior in rats. Lasseter HC; Wells AM; Xie X; Fuchs RA Neuropsychopharmacology; 2011 Feb; 36(3):711-20. PubMed ID: 21124303 [TBL] [Abstract][Full Text] [Related]
20. Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior. Floresco SB; McLaughlin RJ; Haluk DM Neuroscience; 2008 Jun; 154(3):877-84. PubMed ID: 18479836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]