These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20072122)

  • 1. Differential role of muscarinic transmission within the entorhinal cortex and basolateral amygdala in the processing of irrelevant stimuli.
    Barak S; Weiner I
    Neuropsychopharmacology; 2010 Apr; 35(5):1073-82. PubMed ID: 20072122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor.
    Barak S; Weiner I
    Neuropsychopharmacology; 2007 May; 32(5):989-99. PubMed ID: 16971898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala.
    Passani MB; Cangioli I; Baldi E; Bucherelli C; Mannaioni PF; Blandina P
    Eur J Neurosci; 2001 Nov; 14(9):1522-32. PubMed ID: 11722614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociating scopolamine-induced disrupted and persistent latent inhibition: stage-dependent effects of glycine and physostigmine.
    Barak S; Weiner I
    Psychopharmacology (Berl); 2010 Apr; 209(2):175-84. PubMed ID: 20179909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscarinic transmission in the basolateral amygdala is necessary for the acquisition of socially transmitted food preferences in rats.
    Carballo-Márquez A; Vale-Martínez A; Guillazo-Blanch G; Martí-Nicolovius M
    Neurobiol Learn Mem; 2009 Jan; 91(1):98-101. PubMed ID: 18951987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The M₁/M₄ preferring agonist xanomeline reverses amphetamine-, MK801- and scopolamine-induced abnormalities of latent inhibition: putative efficacy against positive, negative and cognitive symptoms in schizophrenia.
    Barak S; Weiner I
    Int J Neuropsychopharmacol; 2011 Oct; 14(9):1233-46. PubMed ID: 21211109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats.
    Schiller D; Weiner I
    Neuroscience; 2004; 128(1):15-25. PubMed ID: 15450350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex.
    Pezze MA; Marshall HJ; Cassaday HJ
    J Neurosci; 2017 Jun; 37(26):6289-6298. PubMed ID: 28559376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an animal model of an antipsychotic drug-resistant cognitive impairment in schizophrenia: scopolamine induces abnormally persistent latent inhibition, which can be reversed by cognitive enhancers but not by antipsychotic drugs.
    Barak S; Weiner I
    Int J Neuropsychopharmacol; 2009 Mar; 12(2):227-41. PubMed ID: 18687163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basolateral amygdala lesions in the rat produce an abnormally persistent latent inhibition with weak preexposure but not with context shift.
    Schiller D; Weiner I
    Behav Brain Res; 2005 Aug; 163(1):115-21. PubMed ID: 15921766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Regulation of Prelimbic and Thalamic Transmission to the Basolateral Amygdala by Acetylcholine Receptors.
    Tryon SC; Bratsch-Prince JX; Warren JW; Jones GC; McDonald AJ; Mott DD
    J Neurosci; 2023 Feb; 43(5):722-735. PubMed ID: 36535767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic receptor signaling in the amygdala is required for conditioned taste aversion.
    Morin JP; Rodríguez-Nava E; Torres-García VM; Contreras-Vázquez OA; Castellanos-Pérez CA; Tovar-Díaz J; Roldán-Roldán G
    Neurosci Lett; 2021 Jan; 740():135466. PubMed ID: 33152457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning.
    Schauz C; Koch M
    Learn Mem; 2000; 7(6):393-9. PubMed ID: 11112798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amygdala modulates morphine-induced state-dependent memory retrieval via muscarinic acetylcholine receptors.
    Rezayof A; Khajehpour L; Zarrindast MR
    Neuroscience; 2009 May; 160(2):255-63. PubMed ID: 19272427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cholinergic-dependent role for the entorhinal cortex in trace fear conditioning.
    Esclassan F; Coutureau E; Di Scala G; Marchand AR
    J Neurosci; 2009 Jun; 29(25):8087-93. PubMed ID: 19553448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of Long-Term Depression Potentiates Latent Inhibition: Key Role for Central Nucleus of the Amygdala.
    Ashby DM; Dias C; Aleksandrova LR; Lapish CC; Wang YT; Phillips AG
    Int J Neuropsychopharmacol; 2021 Jul; 24(7):580-591. PubMed ID: 33693669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation.
    Kirry AJ; Durigan DJ; Twining RC; Gilmartin MR
    Neurobiol Learn Mem; 2019 May; 161():26-36. PubMed ID: 30851433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "two-headed" latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment.
    Weiner I
    Psychopharmacology (Berl); 2003 Sep; 169(3-4):257-97. PubMed ID: 12601500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of muscarinic receptor antagonism in the basolateral amygdala on two-way active avoidance.
    Carballo-Márquez A; Boadas-Vaello P; Villarejo-Rodríguez I; Guillazo-Blanch G; Martí-Nicolovius M; Vale-Martínez A
    Exp Brain Res; 2011 Mar; 209(3):455-64. PubMed ID: 21318348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a critical role of entorhinal cortex at pre-exposure for latent inhibition disruption in rats.
    Seillier A; Dieu Y; Herbeaux K; Di Scala G; Will B; Majchrzak M
    Hippocampus; 2007; 17(3):220-6. PubMed ID: 17203462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.