BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 20072916)

  • 41. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging Redox State in Mouse Muscles of Different Ages.
    Moon L; Frederick DW; Baur JA; Li LZ
    Adv Exp Med Biol; 2017; 977():51-57. PubMed ID: 28685427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Label-free imaging of redox status and collagen deposition showing metabolic differences in the heart.
    Morrison JL; Sorvina A; Darby JRT; Bader CA; Lock MC; Seed M; Kuchel T; Plush SE; Brooks DA
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 29057578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visualizing extracellular matrix and sensing fibroblasts metabolism in human dermis by nonlinear spectral imaging.
    Zhuo S; Chen J; Jiang X; Cheng X; Xie S
    Skin Res Technol; 2007 Nov; 13(4):406-11. PubMed ID: 17908192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Live-Cell Imaging Quantifies Changes in Function and Metabolic NADH Autofluorescence During Macrophage-Mediated Phagocytosis of Tumor Cells.
    Bess SN; Igoe MJ; Muldoon TJ
    Immunol Invest; 2024 Feb; 53(2):210-223. PubMed ID: 37999933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flavin Adenine Dinucleotide Fluorescence as an Early Marker of Mitochondrial Impairment During Brain Hypoxia.
    Berndt N; Kovács R; Rösner J; Wallach I; Dreier JP; Liotta A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.
    Heikal AA
    Biomark Med; 2010 Apr; 4(2):241-63. PubMed ID: 20406068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MitoRACE: evaluating mitochondrial function in vivo and in single cells with subcellular resolution using multiphoton NADH autofluorescence.
    Willingham TB; Zhang Y; Andreoni A; Knutson JR; Lee DY; Glancy B
    J Physiol; 2019 Nov; 597(22):5411-5428. PubMed ID: 31490555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.
    Yu Q; Heikal AA
    J Photochem Photobiol B; 2009 Apr; 95(1):46-57. PubMed ID: 19179090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer.
    Provenzano PP; Rueden CT; Trier SM; Yan L; Ponik SM; Inman DR; Keely PJ; Eliceiri KW
    J Biomed Opt; 2008; 13(3):031220. PubMed ID: 18601544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multispectral Imaging of Metabolic Fluorophores: Comparing In Vivo and Fresh Ex Vivo Tissue.
    Carver GE; Locknar SA; Ghule PN; Pung CJ; Weaver DL; Stein JL; Stein GS
    Crit Rev Eukaryot Gene Expr; 2024; 34(1):69-74. PubMed ID: 37824393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios.
    Quinn KP; Bellas E; Fourligas N; Lee K; Kaplan DL; Georgakoudi I
    Biomaterials; 2012 Jul; 33(21):5341-8. PubMed ID: 22560200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury.
    Hall AM; Rhodes GJ; Sandoval RM; Corridon PR; Molitoris BA
    Kidney Int; 2013 Jan; 83(1):72-83. PubMed ID: 22992467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J; Engstová H; Ježek P
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical imaging detects metabolic signatures associated with oocyte quality†.
    Tan TCY; Brown HM; Thompson JG; Mustafa S; Dunning KR
    Biol Reprod; 2022 Oct; 107(4):1014-1025. PubMed ID: 35863764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with glioblastoma phenotype and survival.
    Schroeder A; Pointer K; Clark P; Datta R; Kuo J; Eliceiri K
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32216192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells.
    Levitt JM; Baldwin A; Papadakis A; Puri S; Xylas J; Münger K; Georgakoudi I
    J Biomed Opt; 2006; 11(6):064012. PubMed ID: 17212535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.