These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 20073062)
21. Design of a rotamer library for coarse-grained models in protein-folding simulations. Larriva M; Rey A J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725 [TBL] [Abstract][Full Text] [Related]
22. Physics-Based Potentials for Coarse-Grained Modeling of Protein-DNA Interactions. Yin Y; Sieradzan AK; Liwo A; He Y; Scheraga HA J Chem Theory Comput; 2015 Apr; 11(4):1792-808. PubMed ID: 26052263 [TBL] [Abstract][Full Text] [Related]
23. Coarse-grained force field: general folding theory. Liwo A; He Y; Scheraga HA Phys Chem Chem Phys; 2011 Oct; 13(38):16890-901. PubMed ID: 21643583 [TBL] [Abstract][Full Text] [Related]
24. Comparison between molecular dynamic based and knowledge based potentials for protein side chains. Betancourt MR J Comput Biol; 2010 Jul; 17(7):943-52. PubMed ID: 20632873 [TBL] [Abstract][Full Text] [Related]
25. The energetics of off-rotamer protein side-chain conformations. Petrella RJ; Karplus M J Mol Biol; 2001 Oct; 312(5):1161-75. PubMed ID: 11580256 [TBL] [Abstract][Full Text] [Related]
26. Maximum Likelihood Calibration of the UNRES Force Field for Simulation of Protein Structure and Dynamics. Krupa P; Hałabis A; Żmudzińska W; Ołdziej S; Scheraga HA; Liwo A J Chem Inf Model; 2017 Sep; 57(9):2364-2377. PubMed ID: 28809487 [TBL] [Abstract][Full Text] [Related]
27. The Dynameomics rotamer library: amino acid side chain conformations and dynamics from comprehensive molecular dynamics simulations in water. Scouras AD; Daggett V Protein Sci; 2011 Feb; 20(2):341-52. PubMed ID: 21280126 [TBL] [Abstract][Full Text] [Related]
28. Prediction of the structures of proteins with the UNRES force field, including dynamic formation and breaking of disulfide bonds. Czaplewski C; Oldziej S; Liwo A; Scheraga HA Protein Eng Des Sel; 2004 Jan; 17(1):29-36. PubMed ID: 14985535 [TBL] [Abstract][Full Text] [Related]
29. Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences. Hu X; Kuhlman B Proteins; 2006 Mar; 62(3):739-48. PubMed ID: 16317667 [TBL] [Abstract][Full Text] [Related]
30. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps. Stapley BJ; Doig AJ J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103 [TBL] [Abstract][Full Text] [Related]
31. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Jiang F; Han W; Wu YD Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383 [TBL] [Abstract][Full Text] [Related]
32. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains. Makowski M; Liwo A; Sobolewski E; Scheraga HA J Phys Chem B; 2011 May; 115(19):6119-29. PubMed ID: 21500792 [TBL] [Abstract][Full Text] [Related]
33. Orientational potentials extracted from protein structures improve native fold recognition. Buchete NV; Straub JE; Thirumalai D Protein Sci; 2004 Apr; 13(4):862-74. PubMed ID: 15044723 [TBL] [Abstract][Full Text] [Related]
34. A backbone-dependent rotamer library with high (ϕ, ψ) coverage using metadynamics simulations. Mortensen JC; Damjanovic J; Miao J; Hui T; Lin YS Protein Sci; 2022 Dec; 31(12):e4491. PubMed ID: 36327064 [TBL] [Abstract][Full Text] [Related]
35. (Ala)(4)-X-(Ala)4 as a model system for the optimization of the χ1 and χ2 amino acid side-chain dihedral empirical force field parameters. Shim J; Zhu X; Best RB; MacKerell AD J Comput Chem; 2013 Mar; 34(7):593-603. PubMed ID: 23197420 [TBL] [Abstract][Full Text] [Related]
36. A united residue force-field for calcium-protein interactions. Khalili M; Saunders JA; Liwo A; Ołdziej S; Scheraga HA Protein Sci; 2004 Oct; 13(10):2725-35. PubMed ID: 15388862 [TBL] [Abstract][Full Text] [Related]
37. Energy minimizations with a combination of two knowledge-based potentials for protein folding. de Sancho D; Rey A J Comput Chem; 2008 Jul; 29(10):1684-92. PubMed ID: 18351603 [TBL] [Abstract][Full Text] [Related]
38. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics. Czaplewski C; Karczynska A; Sieradzan AK; Liwo A Nucleic Acids Res; 2018 Jul; 46(W1):W304-W309. PubMed ID: 29718313 [TBL] [Abstract][Full Text] [Related]
39. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. IV. Pairs of different hydrophobic side chains. Makowski M; Sobolewski E; Czaplewski C; Ołdziej S; Liwo A; Scheraga HA J Phys Chem B; 2008 Sep; 112(36):11385-95. PubMed ID: 18700740 [TBL] [Abstract][Full Text] [Related]
40. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Mackerell AD; Feig M; Brooks CL J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]