BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20073189)

  • 1. [Advances in multidimensional high performance liquid chromatography for separation technology in proteomic study].
    Gao M; Guan X; Hong G; Zhang X
    Se Pu; 2009 Sep; 27(5):551-5. PubMed ID: 20073189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysis--a review.
    Wu Q; Yuan H; Zhang L; Zhang Y
    Anal Chim Acta; 2012 Jun; 731():1-10. PubMed ID: 22652259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of chromatographic techniques in proteomic analysis.
    Neverova I; Van Eyk JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):51-63. PubMed ID: 15652798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of multidimensional liquid chromatography and application in proteomic analysis.
    Gao M; Qi D; Zhang P; Deng C; Zhang X
    Expert Rev Proteomics; 2010 Oct; 7(5):665-78. PubMed ID: 20973640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis.
    Gu X; Deng C; Yan G; Zhang X
    J Proteome Res; 2006 Nov; 5(11):3186-96. PubMed ID: 17081071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HPLC techniques for proteomics analysis--a short overview of latest developments.
    Mitulovic G; Mechtler K
    Brief Funct Genomic Proteomic; 2006 Dec; 5(4):249-60. PubMed ID: 17124183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of a droplet-interfaced high performance liquid chromatography-capillary electrophoresis two dimensional separation platform].
    Ye L; Wu Q; Dai S; Xiao Z; Zhang B
    Se Pu; 2011 Sep; 29(9):857-61. PubMed ID: 22233072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional protein identification technology for clinical proteomic analysis.
    Mauri P; Scigelova M
    Clin Chem Lab Med; 2009; 47(6):636-46. PubMed ID: 19527137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography.
    Sandra K; Moshir M; D'hondt F; Verleysen K; Kas K; Sandra P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Apr; 866(1-2):48-63. PubMed ID: 18006394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preparation of monolithic materials and their applications in proteomic analysis].
    Liang Y; Zhang L; Zhang Y
    Se Pu; 2011 Sep; 29(9):805-15. PubMed ID: 22233066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technological development of multidimensional liquid chromatography-mass spectrometry in proteome research.
    Yu H; Tai Q; Yang C; Gao M; Zhang X
    J Chromatogr A; 2023 Jul; 1700():464048. PubMed ID: 37167805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometric profiling of low-molecular-weight proteins.
    Rainer M; Sajdik C; Bonn GK
    Methods Mol Biol; 2013; 1023():83-95. PubMed ID: 23765620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional capillary array liquid chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for high-throughput proteomic analysis.
    Liu C; Zhang X
    J Chromatogr A; 2007 Jan; 1139(2):191-8. PubMed ID: 17126347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples.
    Melchior K; Tholey A; Heisel S; Keller A; Lenhof HP; Meese E; Huber CG
    J Chromatogr A; 2010 Oct; 1217(40):6159-68. PubMed ID: 20810122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Proteome Coverage by Reducing Sample Complexity via Chromatography.
    Kota U; Stolowitz ML
    Adv Exp Med Biol; 2016; 919():83-143. PubMed ID: 27975214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel strategy of high-abundance protein depletion using multidimensional liquid chromatography.
    Gao M; Zhang J; Deng C; Yang P; Zhang X
    J Proteome Res; 2006 Oct; 5(10):2853-60. PubMed ID: 17022657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow field-flow fractionation: a pre-analytical method for proteomics.
    Reschiglian P; Moon MH
    J Proteomics; 2008 Aug; 71(3):265-76. PubMed ID: 18602503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis by multidimensional protein identification technology.
    Florens L; Washburn MP
    Methods Mol Biol; 2006; 328():159-75. PubMed ID: 16785648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of Edman degradation of peptides with liquid chromatography/mass spectrometry workflow for peptide identification in bottom-up proteomics.
    Lobas AA; Verenchikov AN; Goloborodko AA; Levitsky LI; Gorshkov MV
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):391-400. PubMed ID: 23280970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins.
    Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE
    J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.