These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20074142)

  • 1. BYPASS1: how a tiny mutant tells a big story about root-to-shoot signaling.
    Sieburth LE; Lee DK
    J Integr Plant Biol; 2010 Jan; 52(1):77-85. PubMed ID: 20074142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the biosynthetic pathway for the bypass1 root-derived signal.
    Van Norman JM; Sieburth LE
    Plant J; 2007 Feb; 49(4):619-28. PubMed ID: 17217459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BYPASS1: synthesis of the mobile root-derived signal requires active root growth and arrests early leaf development.
    Van Norman JM; Murphy C; Sieburth LE
    BMC Plant Biol; 2011 Feb; 11():28. PubMed ID: 21291559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mobile bypass Signal Arrests Shoot Growth by Disrupting Shoot Apical Meristem Maintenance, Cytokinin Signaling, and WUS Transcription Factor Expression.
    Lee DK; Parrott DL; Adhikari E; Fraser N; Sieburth LE
    Plant Physiol; 2016 Jul; 171(3):2178-90. PubMed ID: 27208247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of shoot and root development through mutual signaling.
    Puig J; Pauluzzi G; Guiderdoni E; Gantet P
    Mol Plant; 2012 Sep; 5(5):974-83. PubMed ID: 22628542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways.
    Stefanovic A; Ribot C; Rouached H; Wang Y; Chong J; Belbahri L; Delessert S; Poirier Y
    Plant J; 2007 Jun; 50(6):982-94. PubMed ID: 17461783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BYPASS1 negatively regulates a root-derived signal that controls plant architecture.
    Van Norman JM; Frederick RL; Sieburth LE
    Curr Biol; 2004 Oct; 14(19):1739-46. PubMed ID: 15458645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydraulic signal in root-to-shoot signalling of water shortage.
    Christmann A; Weiler EW; Steudle E; Grill E
    Plant J; 2007 Oct; 52(1):167-74. PubMed ID: 17711416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP; Connolly EL; Rogers EE
    Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers.
    Sarkar AK; Luijten M; Miyashima S; Lenhard M; Hashimoto T; Nakajima K; Scheres B; Heidstra R; Laux T
    Nature; 2007 Apr; 446(7137):811-4. PubMed ID: 17429400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana.
    Uehara T; Okushima Y; Mimura T; Tasaka M; Fukaki H
    Plant Cell Physiol; 2008 Jul; 49(7):1025-38. PubMed ID: 18505759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravity sensing and signaling.
    Morita MT; Tasaka M
    Curr Opin Plant Biol; 2004 Dec; 7(6):712-8. PubMed ID: 15491921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical root to shoot signaling under drought.
    Schachtman DP; Goodger JQ
    Trends Plant Sci; 2008 Jun; 13(6):281-7. PubMed ID: 18467158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots.
    Kuroha T; Ueguchi C; Sakakibara H; Satoh S
    Plant Cell Physiol; 2006 Feb; 47(2):234-43. PubMed ID: 16357038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-distance signaling in bypass1 mutants: bioassay development reveals the bps signal to be a metabolite.
    Adhikari E; Lee DK; Giavalisco P; Sieburth LE
    Mol Plant; 2013 Jan; 6(1):164-73. PubMed ID: 23335754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cryptic natural variant allele of BYPASS2 suppresses the bypass1 mutant phenotype.
    Cummins AJ; Siler CJ; Olson JM; Kaur A; Hamdani AK; Olson LK; Dilkes BP; Sieburth LE
    Plant Physiol; 2023 May; 192(2):1016-1027. PubMed ID: 36905371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bps signal: embryonic arrest from an auxin-independent mechanism in bypass triple mutants.
    Lee DK; Sieburth LE
    Plant Signal Behav; 2012 Jun; 7(6):698-700. PubMed ID: 22580686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana.
    López-Bucio J; Campos-Cuevas JC; Hernández-Calderón E; Velásquez-Becerra C; Farías-Rodríguez R; Macías-Rodríguez LI; Valencia-Cantero E
    Mol Plant Microbe Interact; 2007 Feb; 20(2):207-17. PubMed ID: 17313171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance.
    Saiga S; Furumizu C; Yokoyama R; Kurata T; Sato S; Kato T; Tabata S; Suzuki M; Komeda Y
    Development; 2008 May; 135(10):1751-9. PubMed ID: 18403411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.