These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 20075017)
21. Surface initiated atom transfer radical polymerization: access to three dimensional wavelike polymer structure modified capillary columns for online phosphopeptide enrichment. Qin W; Zhang W; Song L; Zhang Y; Qian X Anal Chem; 2010 Nov; 82(22):9461-8. PubMed ID: 21028865 [TBL] [Abstract][Full Text] [Related]
22. Preparation of TiO Zhu B; Zhou Q; Zhen D; Wang Y; Cai Q; Chen P Talanta; 2019 Mar; 194():870-875. PubMed ID: 30609618 [TBL] [Abstract][Full Text] [Related]
23. Amine-functionalized sol-gel-based lab-in-a-pipet-tip approach for the fast enrichment and specific purification of phosphopeptides in MALDI-MS applications. Atakay M; Celikbıçak O; Salih B Anal Chem; 2012 Mar; 84(6):2713-20. PubMed ID: 22393919 [TBL] [Abstract][Full Text] [Related]
25. Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides. Shen F; Hu Y; Guan P; Ren X J Sep Sci; 2013 Feb; 36(3):540-7. PubMed ID: 23281309 [TBL] [Abstract][Full Text] [Related]
26. Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity. Zhang L; Xu J; Sun L; Ma J; Yang K; Liang Z; Zhang L; Zhang Y Anal Bioanal Chem; 2011 Apr; 399(10):3399-405. PubMed ID: 21258783 [TBL] [Abstract][Full Text] [Related]
27. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Raijmakers R; Kraiczek K; de Jong AP; Mohammed S; Heck AJ Anal Chem; 2010 Feb; 82(3):824-32. PubMed ID: 20058876 [TBL] [Abstract][Full Text] [Related]
28. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides. Thingholm TE; Larsen MR Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924 [TBL] [Abstract][Full Text] [Related]
29. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. Hsieh HC; Sheu C; Shi FK; Li DT J Chromatogr A; 2007 Sep; 1165(1-2):128-35. PubMed ID: 17714720 [TBL] [Abstract][Full Text] [Related]
30. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533 [TBL] [Abstract][Full Text] [Related]
31. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941 [TBL] [Abstract][Full Text] [Related]
32. Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment. Wan H; Yan J; Yu L; Zhang X; Xue X; Li X; Liang X Talanta; 2010 Oct; 82(5):1701-7. PubMed ID: 20875566 [TBL] [Abstract][Full Text] [Related]
33. Metal oxide-based enrichment combined with gas-phase ion-electron reactions for improved mass spectrometric characterization of protein phosphorylation. Kweon HK; Håkansson K J Proteome Res; 2008 Feb; 7(2):749-55. PubMed ID: 18171022 [TBL] [Abstract][Full Text] [Related]
34. Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. Qi D; Lu J; Deng C; Zhang X J Chromatogr A; 2009 Jul; 1216(29):5533-9. PubMed ID: 19515374 [TBL] [Abstract][Full Text] [Related]
35. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related]
36. Facile preparation of monolithic immobilized metal affinity chromatography capillary columns for selective enrichment of phosphopeptides. Zhang L; Wang H; Liang Z; Yang K; Zhang L; Zhang Y J Sep Sci; 2011 Aug; 34(16-17):2122-30. PubMed ID: 21598383 [TBL] [Abstract][Full Text] [Related]
37. An optimized magnetite microparticle-based phosphopeptide enrichment strategy for identifying multiple phosphorylation sites in an immunoprecipitated protein. Huang Y; Shi Q; Tsung CK; Gunawardena HP; Xie L; Yu Y; Liang H; Yang P; Stucky GD; Chen X Anal Biochem; 2011 Jan; 408(1):19-31. PubMed ID: 20696126 [TBL] [Abstract][Full Text] [Related]
38. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Pinkse MW; Uitto PM; Hilhorst MJ; Ooms B; Heck AJ Anal Chem; 2004 Jul; 76(14):3935-43. PubMed ID: 15253627 [TBL] [Abstract][Full Text] [Related]
39. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Li Y; Liu Y; Tang J; Lin H; Yao N; Shen X; Deng C; Yang P; Zhang X J Chromatogr A; 2007 Nov; 1172(1):57-71. PubMed ID: 17936290 [TBL] [Abstract][Full Text] [Related]