These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 20075017)
41. Fast, efficient, and quality-controlled phosphopeptide enrichment from minute sample amounts using titanium dioxide. Dickhut C; Radau S; Zahedi RP Methods Mol Biol; 2014; 1156():417-30. PubMed ID: 24792005 [TBL] [Abstract][Full Text] [Related]
42. Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides. He XM; Chen X; Zhu GT; Wang Q; Yuan BF; Feng YQ ACS Appl Mater Interfaces; 2015 Aug; 7(31):17356-62. PubMed ID: 26207954 [TBL] [Abstract][Full Text] [Related]
43. [Application of aspartic acid as a non-specific binding inhibitor in the enrichment of phosphopeptides with titanium dioxide]. Chi M; Bi W; Lu Z; Song L; Jia W; Zhang Y; Qian X; Cai Y Se Pu; 2010 Feb; 28(2):152-7. PubMed ID: 20556953 [TBL] [Abstract][Full Text] [Related]
44. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Dunn JD; Reid GE; Bruening ML Mass Spectrom Rev; 2010; 29(1):29-54. PubMed ID: 19263479 [TBL] [Abstract][Full Text] [Related]
45. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. Krásný L; Pompach P; Strohalm M; Obsilova V; Strnadová M; Novák P; Volný M J Mass Spectrom; 2012 Oct; 47(10):1294-302. PubMed ID: 23019160 [TBL] [Abstract][Full Text] [Related]
46. Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Mazanek M; Mituloviae G; Herzog F; Stingl C; Hutchins JR; Peters JM; Mechtler K Nat Protoc; 2007; 2(5):1059-69. PubMed ID: 17545998 [TBL] [Abstract][Full Text] [Related]
47. Absolute and site-specific quantification of protein phosphorylation using integrated elemental and molecular mass spectrometry: its potential to assess phosphopeptide enrichment procedures. Navaza AP; Encinar JR; Carrascal M; Abian J; Sanz-Medel A Anal Chem; 2008 Mar; 80(5):1777-87. PubMed ID: 18247585 [TBL] [Abstract][Full Text] [Related]
48. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Thingholm TE; Jensen ON; Larsen MR Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006 [TBL] [Abstract][Full Text] [Related]
49. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment. Arribas Diez I; Govender I; Naicker P; Stoychev S; Jordaan J; Jensen ON J Proteome Res; 2021 Jan; 20(1):453-462. PubMed ID: 33226818 [TBL] [Abstract][Full Text] [Related]
50. Highly specific capture and direct MALDI MS analysis of phosphopeptides by zirconium phosphonate on self-assembled monolayers. Hoang T; Roth U; Kowalewski K; Belisle C; Steinert K; Karas M Anal Chem; 2010 Jan; 82(1):219-28. PubMed ID: 19968246 [TBL] [Abstract][Full Text] [Related]
51. Zirconium arsenate-modified silica nanoparticles for specific capture of phosphopeptides and direct analysis by matrix-assisted laser desorption/ionization mass spectrometry. Zhao PX; Guo XF; Wang H; Qi CB; Xia HS; Zhang HS Anal Bioanal Chem; 2012 Jan; 402(3):1041-56. PubMed ID: 22105300 [TBL] [Abstract][Full Text] [Related]
52. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. Kyono Y; Sugiyama N; Imami K; Tomita M; Ishihama Y J Proteome Res; 2008 Oct; 7(10):4585-93. PubMed ID: 18767875 [TBL] [Abstract][Full Text] [Related]
53. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Cantin GT; Shock TR; Park SK; Madhani HD; Yates JR Anal Chem; 2007 Jun; 79(12):4666-73. PubMed ID: 17523591 [TBL] [Abstract][Full Text] [Related]
54. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
55. Optimization of enrichment conditions on TiO2 chromatography using glycerol as an additive reagent for effective phosphoproteomic analysis. Fukuda I; Hirabayashi-Ishioka Y; Sakikawa I; Ota T; Yokoyama M; Uchiumi T; Morita A J Proteome Res; 2013 Dec; 12(12):5587-97. PubMed ID: 24245541 [TBL] [Abstract][Full Text] [Related]
56. An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis. Yao Y; Dong J; Dong M; Liu F; Wang Y; Mao J; Ye M; Zou H J Chromatogr A; 2017 May; 1498():22-28. PubMed ID: 28347515 [TBL] [Abstract][Full Text] [Related]
57. Titanium(IV)-functionalized zirconium-organic frameworks as dual-metal affinity probe for recognition of endogenous phosphopeptides prior to mass spectrometric quantification. Zheng H; Wang J; Gao M; Zhang X Mikrochim Acta; 2019 Nov; 186(12):829. PubMed ID: 31754799 [TBL] [Abstract][Full Text] [Related]
58. Preparation of mixed lanthanides-immobilized magnetic nanoparticles for selective enrichment and identification of phosphopeptides by MS. Zhai R; Jiao F; Feng D; Hao F; Li J; Li N; Yan H; Wang H; Jin Z; Zhang Y; Qian X Electrophoresis; 2014 Dec; 35(24):3470-8. PubMed ID: 24846711 [TBL] [Abstract][Full Text] [Related]
59. Selective capture of phosphopeptides by zirconium phosphonate-magnetic nanoparticles. Zhao L; Wu R; Zou H Methods Mol Biol; 2011; 790():215-22. PubMed ID: 21948418 [TBL] [Abstract][Full Text] [Related]
60. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Yan Y; Zheng Z; Deng C; Zhang X; Yang P Talanta; 2014 Jan; 118():14-20. PubMed ID: 24274265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]