These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2007569)

  • 21. Modified nucleotides reveal the indirect role of the central base pairs in stabilizing the lac repressor-operator complex.
    Zhang X; Gottlieb PA
    Nucleic Acids Res; 1995 May; 23(9):1502-11. PubMed ID: 7784203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR study of the interaction between the lac repressor and the lac operator.
    Buck F; Hahn KD; Zemann W; Rüterjans H; Sadler JR; Beyreuther K; Kaptein R; Scheek R; Hull WE
    Eur J Biochem; 1983 May; 132(2):321-7. PubMed ID: 6341060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine.
    Hicke BJ; Willis MC; Koch TH; Cech TR
    Biochemistry; 1994 Mar; 33(11):3364-73. PubMed ID: 8136374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator.
    Slijper M; Bonvin AM; Boelens R; Kaptein R
    J Mol Biol; 1996 Jun; 259(4):761-73. PubMed ID: 8683581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of lactose repressor carboxyl-terminal domain affects tetramer formation.
    Chen J; Matthews KS
    J Biol Chem; 1992 Jul; 267(20):13843-50. PubMed ID: 1629185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. lac repressor-lac operator interaction: NMR observations.
    Nick H; Arndt K; Boschelli F; Jarema MA; Lillis M; Sadler J; Caruthers M; Lu P
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):218-22. PubMed ID: 7043455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallographic analysis of Lac repressor bound to natural operator O1.
    Bell CE; Lewis M
    J Mol Biol; 2001 Oct; 312(5):921-6. PubMed ID: 11580238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between the trp repressor and its operator sequence as studied by base analogue substitution.
    Mazzarelli JM; Rajur SB; Iadarola PL; McLaughlin LW
    Biochemistry; 1992 Jun; 31(25):5925-36. PubMed ID: 1610835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serine to cysteine mutations in trp repressor protein alter tryptophan and operator binding.
    Chou WY; Matthews KS
    J Biol Chem; 1989 Nov; 264(31):18314-9. PubMed ID: 2509454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An altered specificity mutation in the lambda repressor induces global reorganization of the protein-DNA interface.
    Benevides JM; Weiss MA; Thomas GJ
    J Biol Chem; 1994 Apr; 269(14):10869-78. PubMed ID: 8144673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interaction of lac repressor headpiece with its operator: an NMR view.
    Boelens R; Lamerichs RM; Rullmann JA; van Boom JH; Kaptein R
    Protein Seq Data Anal; 1988; 1(6):487-98. PubMed ID: 3064080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator.
    Spronk CA; Bonvin AM; Radha PK; Melacini G; Boelens R; Kaptein R
    Structure; 1999 Dec; 7(12):1483-92. PubMed ID: 10647179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and dynamics of the lac repressor-operator complex as determined by NMR.
    Kaptein R; Slijper M; Boelens R
    Toxicol Lett; 1995 Dec; 82-83():591-9. PubMed ID: 8597114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of supercoiling and sequence context on operator DNA binding with lac repressor.
    Whitson PA; Hsieh WT; Wells RD; Matthews KS
    J Biol Chem; 1987 Oct; 262(30):14592-9. PubMed ID: 3667592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proximity probing of Tet repressor to tet operator by dimethylsulfate reveals protected and accessible functions for each recognized base-pair in the major groove.
    Helbl V; Berens C; Hillen W
    J Mol Biol; 1995 Feb; 245(5):538-48. PubMed ID: 7844824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 31P NMR spectra of an oligodeoxyribonucleotide duplex lac operator-repressor headpiece complex.
    Karslake C; Schroeder S; Wang PL; Gorenstein DG
    Biochemistry; 1990 Jul; 29(28):6578-84. PubMed ID: 2144453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selectively 13C-enriched DNA: evidence from 13C1' relaxation rate measurements of an internal dynamics sequence effect in the lac operator.
    Paquet F; Gaudin F; Lancelot G
    J Biomol NMR; 1996 Oct; 8(3):252-60. PubMed ID: 8953216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical base pairs and amino acid residues for protein-DNA interaction between the TyrR protein and tyrP operator of Escherichia coli.
    Hwang JS; Yang J; Pittard AJ
    J Bacteriol; 1997 Feb; 179(4):1051-8. PubMed ID: 9023183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.
    Baumeister R; Helbl V; Hillen W
    J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.