These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20077)

  • 1. 4,4'-dimethylcholesta-7,9,14-trienol is an intermediate in the demethylation of dihydroagnosterol.
    Tavares IA; Munday KA; Wilton DC
    Biochem J; 1977 Jul; 166(1):17-20. PubMed ID: 20077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathway for the conversion of dihydroagnosterol into cholesterol in rat liver.
    Tavares IA; Munday KA; Wilton DC
    Biochem J; 1977 Jul; 166(1):11-5. PubMed ID: 901410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolic sequence by which some 4,4-dimethyl sterols are converted into cholesterol.
    Gibbons GF
    Biochem J; 1974 Oct; 144(1):59-68. PubMed ID: 4462576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis.
    Watkinson IA; Wilton DC; Munday KA; Akhtar M
    Biochem J; 1971 Jan; 121(1):131-7. PubMed ID: 4398958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and enzymic studies on the characterization of intermediates during the removal of the 14alpha-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanostane derivatives.
    Akhtar M; Alexander K; Boar RB; McGhie JF; Barton DH
    Biochem J; 1978 Mar; 169(3):449-63. PubMed ID: 25646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterol 14-demethylase P450 activity expressed in rat gonads: contribution to the formation of mammalian meiosis-activating sterol.
    Yoshida Y; Yamashita C; Noshiro M; Fukuda M; Aoyama Y
    Biochem Biophys Res Commun; 1996 Jun; 223(3):534-8. PubMed ID: 8687430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of 15-oxygenated sterols on cholesterol synthesis from 24,25-dihydrolanosterol.
    Morisaki M; Sonoda Y; Makino T; Ogihara N; Ikekawa N; Sato Y
    J Biochem; 1986 Feb; 99(2):597-600. PubMed ID: 3700366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro effects of oxygenated lanosterol derivatives on cholesterol biosynthesis from 24,25-dihydrolanosterol.
    Sonoda Y; Sekigawa Y; Sato Y
    Chem Pharm Bull (Tokyo); 1988 Mar; 36(3):966-73. PubMed ID: 3409414
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of hepatic cholesterol biosynthesis. Effects of a cytochrome P-450 inhibitor on the formation and metabolism of oxygenated sterol products of lanosterol.
    Iglesias J; Gibbons GF
    Biochem J; 1989 Dec; 264(2):495-502. PubMed ID: 2604729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of 27-nor-24,25-dihydrolanosterol and 23,24,25,26,27-pentanordihydrolanosterol by rat liver homogenate preparations.
    Sato Y; Sonoda Y
    Chem Pharm Bull (Tokyo); 1982 Feb; 30(2):628-34. PubMed ID: 7094149
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of oxygenated lanosterol analogs on cholesterol biosynthesis from lanosterol.
    Sonoda Y; Sato Y
    Chem Pharm Bull (Tokyo); 1983 May; 31(5):1698-701. PubMed ID: 6616720
    [No Abstract]   [Full Text] [Related]  

  • 12. Investigation of the rate-determining microsomal reaction of cholesterol biosynthesis from lanosterol in Morris hepatomas and liver.
    Williams MT; Gaylor JL; Morris HP
    Cancer Res; 1977 May; 37(5):1377-83. PubMed ID: 192449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lanosterol analogs on cholesterol biosynthesis from lanosterol.
    Sato Y; Sonoda Y
    Chem Pharm Bull (Tokyo); 1981 Sep; 29(9):2604-9. PubMed ID: 7349280
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis of lanosterol analogs with lengthened side chains and their effects on cholesterol biosynthesis from lanosterol.
    Sato Y; Sonoda Y
    Chem Pharm Bull (Tokyo); 1984 May; 32(5):1912-8. PubMed ID: 6467473
    [No Abstract]   [Full Text] [Related]  

  • 15. Purification of a human cytochrome P-450 isozyme catalyzing lanosterol 14 alpha-demethylation.
    Sonoda Y; Endo M; Ishida K; Sato Y; Fukusen N; Fukuhara M
    Biochim Biophys Acta; 1993 Sep; 1170(1):92-7. PubMed ID: 8399332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The degradation of labelled lanosterol by homogenate of rat liver: evidence for the formation of lithocholic acid from lanosterol without cholesterol as intermediate.
    Wiss O; Wiss V
    Biochem Biophys Res Commun; 1978 Aug; 83(3):857-62. PubMed ID: 708435
    [No Abstract]   [Full Text] [Related]  

  • 17. Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol delta 24-reductase.
    Bae SH; Paik YK
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):609-16. PubMed ID: 9291139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ganoderic acid and its derivatives as cholesterol synthesis inhibitors.
    Komoda Y; Shimizu M; Sonoda Y; Sato Y
    Chem Pharm Bull (Tokyo); 1989 Feb; 37(2):531-3. PubMed ID: 2743504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative metabolism of cholesterol precursors: sensitivity to ketoconazole, an inhibitor of cytochrome P-450.
    Iglesias J; Gibbons GF
    Steroids; 1989; 53(3-5):311-28. PubMed ID: 2799848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of the fluorescent probe cholesta-5,7,9(11)-trien-3 beta-ol by rat liver.
    Wilton DC
    Biochem J; 1982 Nov; 208(2):521-3. PubMed ID: 7159414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.