These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20077129)

  • 1. Iridoid glycoside variation in the invasive plant Dalmatian toadflax, Linaria dalmatica (Plantaginaceae), and sequestration by the biological control agent, Calophasia lunula.
    Jamieson MA; Bowers MD
    J Chem Ecol; 2010 Jan; 36(1):70-9. PubMed ID: 20077129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenology of the Dalmatian Toadflax Biological Control Agent Mecinus janthiniformis (Coleoptera: Curculionidae) in Utah.
    Willden SA; Evans EW
    Environ Entomol; 2018 Feb; 47(1):1-7. PubMed ID: 29145607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Summer Development and Survivorship of the Weed Biocontrol Agent, Mecinus janthiniformis (Coleoptera: Curculionidae), Within Stems of Its Host, Dalmatian Toadflax (Lamiales: Plantaginaceae), in Utah.
    Willden SA; Evans EW
    Environ Entomol; 2019 Jun; 48(3):533-539. PubMed ID: 31034548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen enrichment differentially affects above- and belowground plant defense.
    Jamieson MA; Seastedt TR; Bowers MD
    Am J Bot; 2012 Oct; 99(10):1630-7. PubMed ID: 22947484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of simulated nitrogen deposition and altered precipitation patterns on plant allelochemical concentrations.
    Jamieson MA; Quintero C; Blumenthal DM
    J Chem Ecol; 2013 Sep; 39(9):1204-8. PubMed ID: 24008867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Perennial Penstemon: Variation in Defensive Chemistry Across Years, Populations, and Tissues.
    Kelly CA; Bowers MD
    J Chem Ecol; 2017 Jun; 43(6):599-607. PubMed ID: 28589423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing environmental risks for established invasive weeds: Dalmatian (Linaria dalmatica) and yellow (L. vulgaris) toadflax in North America.
    Sing SE; Peterson RK
    Int J Environ Res Public Health; 2011 Jul; 8(7):2828-53. PubMed ID: 21845161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host Plant Suitability in a Specialist Herbivore, Euphydryas anicia (Nymphalidae): Preference, Performance and Sequestration.
    Bradley LE; Kelly CA; Bowers MD
    J Chem Ecol; 2018 Nov; 44(11):1051-1057. PubMed ID: 30175378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical defense across three trophic levels: Catalpa bignonioides, the caterpillar Ceratomia catalpae, and its endoparasitoid Cotesia congregata.
    Lampert EC; Dyer LA; Bowers MD
    J Chem Ecol; 2011 Oct; 37(10):1063-70. PubMed ID: 21948221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.
    Pankoke H; Buschmann T; Müller C
    Phytochemistry; 2013 Oct; 94():99-107. PubMed ID: 23773298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Phenological Events Affect Chemical Defense of Plant Tissues: Iridoid Glycosides in a Woody Shrub.
    Blanchard M; Bowers MD
    J Chem Ecol; 2020 Feb; 46(2):206-216. PubMed ID: 31907751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.
    Richardson LL; Bowers MD; Irwin RE
    Ecology; 2016 Feb; 97(2):325-37. PubMed ID: 27145608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars.
    Lampert EC; Bowers MD
    J Chem Ecol; 2010 Oct; 36(10):1101-4. PubMed ID: 20809144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal Variation in Host Plant Chemistry Drives Sequestration in a Specialist Caterpillar.
    Carper AL; Richardson LL; Irwin RE; Bowers MD
    J Chem Ecol; 2022 Jan; 48(1):79-88. PubMed ID: 34738204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New iridoid glycoside and triterpenoid glycoside from Premna fulva.
    Niu KY; Wang LY; Liu SZ; Zhao WM
    J Asian Nat Prod Res; 2013; 15(1):1-8. PubMed ID: 23231586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae).
    Pankoke H; Bowers MD; Dobler S
    Insect Biochem Mol Biol; 2012 Jun; 42(6):426-34. PubMed ID: 22446106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae.
    Lampert EC; Dyer LA; Bowers MD
    J Chem Ecol; 2010 Sep; 36(9):992-8. PubMed ID: 20683647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of sample preparation techniques for quantifying iridoid glycosides sequestered by lepidopteran larvae.
    Lampert EC; Bowers MD
    J Chem Ecol; 2011 May; 37(5):496-9. PubMed ID: 21475987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of antirrhinoside distribution in the organs of two related Plantaginaceae species with different reproductive strategies.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2009 Nov; 35(11):1363-72. PubMed ID: 19949840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles.
    Willinger G; Dobler S
    Biochem Syst Ecol; 2001 Apr; 29(4):335-346. PubMed ID: 11182483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.