These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 20077223)
1. Risk assessment of low-level cadmium and arsenic on the kidney. Huang M; Choi SJ; Kim DW; Kim NY; Park CH; Yu SD; Kim DS; Park KS; Song JS; Kim H; Choi BS; Yu IJ; Park JD J Toxicol Environ Health A; 2009; 72(21-22):1493-8. PubMed ID: 20077223 [TBL] [Abstract][Full Text] [Related]
2. Biomarkers of cadmium and arsenic interactions. Nordberg GF; Jin T; Hong F; Zhang A; Buchet JP; Bernard A Toxicol Appl Pharmacol; 2005 Aug; 206(2):191-7. PubMed ID: 15967208 [TBL] [Abstract][Full Text] [Related]
3. [Calculation of the combined renal dysfunction risk in patients co-exposed to arsenicum and cadmium by using benchmark dose method]. Hong F; Jin TY; Zhang AH Zhonghua Yu Fang Yi Xue Za Zhi; 2004 Nov; 38(6):374-8. PubMed ID: 15569507 [TBL] [Abstract][Full Text] [Related]
4. Biomarkers of renal effects in children and adults with low environmental exposure to heavy metals. de Burbure C; Buchet JP; Bernard A; Leroyer A; Nisse C; Haguenoer JM; Bergamaschi E; Mutti A J Toxicol Environ Health A; 2003 May; 66(9):783-98. PubMed ID: 12746126 [TBL] [Abstract][Full Text] [Related]
5. Early life low-level cadmium exposure is positively associated with increased oxidative stress. Kippler M; Hossain MB; Lindh C; Moore SE; Kabir I; Vahter M; Broberg K Environ Res; 2012 Jan; 112():164-70. PubMed ID: 22192840 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of factors associated with cadmium exposure and kidney function in the general population. Huang M; Choi SJ; Kim DW; Kim NY; Bae HS; Yu SD; Kim DS; Kim H; Choi BS; Yu IJ; Park JD Environ Toxicol; 2013 Oct; 28(10):563-70. PubMed ID: 21786387 [TBL] [Abstract][Full Text] [Related]
7. Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China. Nordberg GF Toxicol Lett; 2010 Jan; 192(1):45-9. PubMed ID: 19540908 [TBL] [Abstract][Full Text] [Related]
8. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children. Al-Saleh I; Al-Sedairi Aa; Elkhatib R Sci Total Environ; 2012 Aug; 431():188-96. PubMed ID: 22683759 [TBL] [Abstract][Full Text] [Related]
9. [Urinary N-acetyl-beta-D-glucosaminidase and its isoenzymes in smoking and non-smoking workers at copper foundry occupational co-exposed to arsenic cadmium and lead]. Milnerowicz H; Bizoń A; Witt K; Antonowicz-Juchniewicz J; Andrzejak R Przegl Lek; 2008; 65(10):518-21. PubMed ID: 19189537 [TBL] [Abstract][Full Text] [Related]
10. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Roels HA; Hoet P; Lison D Ren Fail; 1999; 21(3-4):251-62. PubMed ID: 10416202 [TBL] [Abstract][Full Text] [Related]
11. Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: usefulness of alpha-glutathione S-transferase. Garçon G; Leleu B; Marez T; Zerimech F; Haguenoer JM; Furon D; Shirali P Sci Total Environ; 2007 May; 377(2-3):165-72. PubMed ID: 17379277 [TBL] [Abstract][Full Text] [Related]
12. Effects of low-dose cadmium exposure on biological examinations. Nakadaira H; Nishi S Sci Total Environ; 2003 Jun; 308(1-3):49-62. PubMed ID: 12738200 [TBL] [Abstract][Full Text] [Related]
13. Low-level cadmium exposure in Toyama City and its surroundings in Toyama prefecture, Japan, with references to possible contribution of shellfish intake to increase urinary cadmium levels. Yamagami T; Ezaki T; Moriguchi J; Fukui Y; Okamoto S; Ukai H; Sakurai H; Aoshima K; Ikeda M Sci Total Environ; 2006 Jun; 362(1-3):56-67. PubMed ID: 16169058 [TBL] [Abstract][Full Text] [Related]
14. Prevalence of kidney dysfunction in humans - relationship to cadmium dose, metallothionein, immunological and metabolic factors. Nordberg GF; Jin T; Wu X; Lu J; Chen L; Lei L; Hong F; Nordberg M Biochimie; 2009 Oct; 91(10):1282-5. PubMed ID: 19563860 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of cadmium toxicity in a Thai population with high-level environmental exposure. Teeyakasem W; Nishijo M; Honda R; Satarug S; Swaddiwudhipong W; Ruangyuttikarn W Toxicol Lett; 2007 Mar; 169(3):185-95. PubMed ID: 17306939 [TBL] [Abstract][Full Text] [Related]
16. Changes in the structure and function of the kidney of rats chronically exposed to cadmium. I. Biochemical and histopathological studies. Brzóska MM; Kamiński M; Supernak-Bobko D; Zwierz K; Moniuszko-Jakoniuk J Arch Toxicol; 2003 Jun; 77(6):344-52. PubMed ID: 12799774 [TBL] [Abstract][Full Text] [Related]
17. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, beta2-microglobulin, and N-acetyl-beta-D-glucosaminidase in cadmium nonpolluted regions in Japan. Kobayashi E; Suwazono Y; Uetani M; Inaba T; Oishi M; Kido T; Nishijo M; Nakagawa H; Nogawa K Environ Res; 2006 Jul; 101(3):401-6. PubMed ID: 16436274 [TBL] [Abstract][Full Text] [Related]
18. [Renal dysfunction in workers exposed to arsenic and cadmium]. Hong F; Jin TY; Lu GD; Yin ZY Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Dec; 21(6):432-6. PubMed ID: 14761355 [TBL] [Abstract][Full Text] [Related]
19. Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Al-Saleh I; Al-Rouqi R; Elkhatib R; Abduljabbar M; Al-Rajudi T Int J Hyg Environ Health; 2017 Nov; 220(8):1252-1278. PubMed ID: 28869188 [TBL] [Abstract][Full Text] [Related]
20. Adverse effects of low occupational cadmium exposure on renal and oxidative stress biomarkers in solderers. Hambach R; Lison D; D'Haese P; Weyler J; François G; De Schryver A; Manuel-Y-Keenoy B; Van Soom U; Caeyers T; van Sprundel M Occup Environ Med; 2013 Feb; 70(2):108-13. PubMed ID: 23104735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]