These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20077238)

  • 1. Quantification of trabecular bone microdamage using the virtual internal bond model and the individual trabeculae segmentation technique.
    Fang G; Ji B; Liu XS; Guo XE
    Comput Methods Biomech Biomed Engin; 2010 Oct; 13(5):605-15. PubMed ID: 20077238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.
    Yeh OC; Keaveny TM
    J Orthop Res; 2001 Nov; 19(6):1001-7. PubMed ID: 11780997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in human trabecular bone: Relationship between microstructural stress and strain and damage morphology.
    Green JO; Nagaraja S; Diab T; Vidakovic B; Guldberg RE
    J Biomech; 2011 Aug; 44(12):2279-85. PubMed ID: 21724189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model.
    Kosmopoulos V; Keller TS
    Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in trabecular bone microdamage initiation.
    Nagaraja S; Lin AS; Guldberg RE
    Bone; 2007 Apr; 40(4):973-80. PubMed ID: 17175210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone.
    Shi X; Liu XS; Wang X; Guo XE; Niebur GL
    Bone; 2010 May; 46(5):1260-6. PubMed ID: 20149908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One year of alendronate treatment lowers microstructural stresses associated with trabecular microdamage initiation.
    O'Neal JM; Diab T; Allen MR; Vidakovic B; Burr DB; Guldberg RE
    Bone; 2010 Aug; 47(2):241-7. PubMed ID: 20483387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.
    Liu XS; Bevill G; Keaveny TM; Sajda P; Guo XE
    J Biomech; 2009 Feb; 42(3):249-56. PubMed ID: 19101672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdamage formation in individual bovine trabeculae during fatigue testing.
    Frank M; Fischer JT; Thurner PJ
    J Biomech; 2021 Jan; 115():110131. PubMed ID: 33257009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial correlations of trabecular bone microdamage with local stresses and strains using rigid image registration.
    Nagaraja S; Skrinjar O; Guldberg RE
    J Biomech Eng; 2011 Jun; 133(6):064502. PubMed ID: 21744931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of single bovine trabeculae are unaffected by strain rate.
    Szabó ME; Taylor M; Thurner PJ
    J Biomech; 2011 Mar; 44(5):962-7. PubMed ID: 21333291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of architecture and estrogen depletion in microdamage risk in trabecular bone.
    Kreipke TC; Garrison JG; Easley J; Turner AS; Niebur GL
    J Biomech; 2016 Oct; 49(14):3223-3229. PubMed ID: 27544617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.