These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 20078034)
1. An in silico method for predicting Ames activities of primary aromatic amines by calculating the stabilities of nitrenium ions. Bentzien J; Hickey ER; Kemper RA; Brewer ML; Dyekjaer JD; East SP; Whittaker M J Chem Inf Model; 2010 Feb; 50(2):274-97. PubMed ID: 20078034 [TBL] [Abstract][Full Text] [Related]
2. Avoidance of the Ames test liability for aryl-amines via computation. McCarren P; Bebernitz GR; Gedeck P; Glowienke S; Grondine MS; Kirman LC; Klickstein J; Schuster HF; Whitehead L Bioorg Med Chem; 2011 May; 19(10):3173-82. PubMed ID: 21524589 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines. Kuhnke L; Ter Laak A; Göller AH J Chem Inf Model; 2019 Feb; 59(2):668-672. PubMed ID: 30694664 [TBL] [Abstract][Full Text] [Related]
4. Relative stabilities of nitrenium ions derived from polycyclic aromatic amines. Relationship to mutagenicity. Ford GP; Herman PS Chem Biol Interact; 1992 Jan; 81(1-2):1-18. PubMed ID: 1730143 [TBL] [Abstract][Full Text] [Related]
5. Ultimate carcinogenic metabolites from aromatic and heterocyclic aromatic amines: a computational study in relation to their mutagenic potency. Borosky GL Chem Res Toxicol; 2007 Feb; 20(2):171-80. PubMed ID: 17261035 [TBL] [Abstract][Full Text] [Related]
6. Quantitative structure-activity (QSAR) relationships of mutagenic aromatic and heterocyclic amines. Hatch FT; Colvin ME Mutat Res; 1997 May; 376(1-2):87-96. PubMed ID: 9202742 [TBL] [Abstract][Full Text] [Related]
7. Relative stabilities of nitrenium ions derived from heterocyclic amine food carcinogens: relationship to mutagenicity. Ford GP; Griffin GR Chem Biol Interact; 1992 Jan; 81(1-2):19-33. PubMed ID: 1730146 [TBL] [Abstract][Full Text] [Related]
8. A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds. Gadaleta D; Manganelli S; Manganaro A; Porta N; Benfenati E Toxicology; 2016 Aug; 370():20-30. PubMed ID: 27644887 [TBL] [Abstract][Full Text] [Related]
9. Structural and quantum chemical factors affecting mutagenic potency of aminoimidazo-azaarenes. Hatch FT; Colvin ME; Seidl ET Environ Mol Mutagen; 1996; 27(4):314-30. PubMed ID: 8665874 [TBL] [Abstract][Full Text] [Related]
10. Quantitative structure-activity relationships of mutagenic aromatic and heteroaromatic azides and amines. Sabbioni G; Wild D Carcinogenesis; 1992 Apr; 13(4):709-13. PubMed ID: 1576721 [TBL] [Abstract][Full Text] [Related]
11. Multiple Instance Learning Improves Ames Mutagenicity Prediction for Problematic Molecular Species. Feeney SV; Lui R; Guan D; Matthews S Chem Res Toxicol; 2023 Aug; 36(8):1227-1237. PubMed ID: 37477941 [TBL] [Abstract][Full Text] [Related]
12. Carcinogenic carbocyclic and heterocyclic aromatic amines: a DFT study concerning their mutagenic potency. Borosky GL J Mol Graph Model; 2008 Nov; 27(4):459-65. PubMed ID: 18799337 [TBL] [Abstract][Full Text] [Related]
13. Computational identification of structural factors affecting the mutagenic potential of aromatic amines: study design and experimental validation. Slavov SH; Stoyanova-Slavova I; Mattes W; Beger RD; Brüschweiler BJ Arch Toxicol; 2018 Jul; 92(7):2369-2384. PubMed ID: 29779177 [TBL] [Abstract][Full Text] [Related]
14. Mutagenicity of heteroaromatic amines: Computational study on the influence of methyl substituents. Borosky GL J Mol Graph Model; 2016 Sep; 69():92-102. PubMed ID: 27592197 [TBL] [Abstract][Full Text] [Related]
15. Mutagenic nitrenes/nitrenium ions from azido-imidazoarenes and their structure-activity relationships. Wild D; Dirr A Mutagenesis; 1989 Nov; 4(6):446-52. PubMed ID: 2695757 [TBL] [Abstract][Full Text] [Related]
16. A local QSAR model based on the stability of nitrenium ions to support the ICH M7 expert review on the mutagenicity of primary aromatic amines. Furukawa A; Ono S; Yamada K; Torimoto N; Asayama M; Muto S Genes Environ; 2022 Mar; 44(1):10. PubMed ID: 35313995 [TBL] [Abstract][Full Text] [Related]
17. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: A case study using aromatic amine mutagenicity. Ahlberg E; Amberg A; Beilke LD; Bower D; Cross KP; Custer L; Ford KA; Van Gompel J; Harvey J; Honma M; Jolly R; Joossens E; Kemper RA; Kenyon M; Kruhlak N; Kuhnke L; Leavitt P; Naven R; Neilan C; Quigley DP; Shuey D; Spirkl HP; Stavitskaya L; Teasdale A; White A; Wichard J; Zwickl C; Myatt GJ Regul Toxicol Pharmacol; 2016 Jun; 77():1-12. PubMed ID: 26879463 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of aromatic amines with different purities and different solvent vehicles in the Ames test. Harding AP; Popelier PL; Harvey J; Giddings A; Foster G; Kranz M Regul Toxicol Pharmacol; 2015 Mar; 71(2):244-50. PubMed ID: 25542092 [TBL] [Abstract][Full Text] [Related]
19. Experimental testing of quantum mechanical predictions of mutagenicity: aminopyrazoles. Leach AG; McCoull W; Bailey A; Barton P; Mee C; Rosevere E Chem Res Toxicol; 2013 May; 26(5):703-9. PubMed ID: 23541044 [TBL] [Abstract][Full Text] [Related]
20. A comparative molecular field analysis (CoMFA) study using semiempirical, density functional, ab initio methods and pharmacophore derivation using DISCOtech on sigma 1 ligands. Jung D; Floyd J; Gund TM J Comput Chem; 2004 Aug; 25(11):1385-99. PubMed ID: 15185333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]