These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20078052)

  • 1. Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO.
    Jia CJ; Liu Y; Bongard H; Schüth F
    J Am Chem Soc; 2010 Feb; 132(5):1520-2. PubMed ID: 20078052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z; Highfield J; Lin M; Teo J; Han YF
    Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High catalytic activity for CO oxidation of gold nanoparticles confined in acidic support Al-SBA-15 at low temperatures.
    Chiang CW; Wang A; Wan BZ; Mou CY
    J Phys Chem B; 2005 Sep; 109(38):18042-7. PubMed ID: 16853317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restructuring-induced activity of SiO(2)-supported large au nanoparticles in low-temperature CO oxidation.
    Qian K; Sun H; Huang W; Fang J; Lv S; He B; Jiang Z; Wei S
    Chemistry; 2008; 14(34):10595-602. PubMed ID: 18925586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of Au by surface OH: nucleation and electronic structure of gold on hydroxylated MgO(001).
    Brown MA; Fujimori Y; Ringleb F; Shao X; Stavale F; Nilius N; Sterrer M; Freund HJ
    J Am Chem Soc; 2011 Jul; 133(27):10668-76. PubMed ID: 21634792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Support effect in high activity gold catalysts for CO oxidation.
    Comotti M; Li WC; Spliethoff B; Schüth F
    J Am Chem Soc; 2006 Jan; 128(3):917-24. PubMed ID: 16417382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework.
    Jiang HL; Liu B; Akita T; Haruta M; Sakurai H; Xu Q
    J Am Chem Soc; 2009 Aug; 131(32):11302-3. PubMed ID: 19637919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene.
    Ma CY; Mu Z; Li JJ; Jin YG; Cheng J; Lu GQ; Hao ZP; Qiao SZ
    J Am Chem Soc; 2010 Mar; 132(8):2608-13. PubMed ID: 20141130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications induced by pretreatments on Au/SBA-15 and their influence on the catalytic activity for low temperature CO oxidation.
    Rombi E; Cutrufello MG; Cannas C; Casu M; Gazzoli D; Occhiuzzi M; Monaci R; Ferino I
    Phys Chem Chem Phys; 2009 Jan; 11(3):593-602. PubMed ID: 19283278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete oxidation of ethylene over supported gold nanoparticle catalysts.
    Ahn HG; Choi BM; Lee DJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3599-603. PubMed ID: 17252819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.
    Long CG; Gilbertson JD; Vijayaraghavan G; Stevenson KJ; Pursell CJ; Chandler BD
    J Am Chem Soc; 2008 Aug; 130(31):10103-15. PubMed ID: 18620389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(2) and CO(2) coadsorption effects in CO adsorption over nanosized Au/gamma-Al(2)O(3) catalysts.
    Georgaka A; Gavril D; Loukopoulos V; Karaiskakis G; Nieuwenhuys BE
    J Chromatogr A; 2008 Sep; 1205(1-2):128-36. PubMed ID: 18723172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique.
    Zhu H; Liang C; Yan W; Overbury SH; Dai S
    J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold.
    Guzman J; Gates BC
    J Am Chem Soc; 2004 Mar; 126(9):2672-3. PubMed ID: 14995163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust gold-decorated silica-titania pebbles for low-temperature CO catalytic oxidation.
    Lim SH; Phonthammachai N; Zhong Z; Teo J; White TJ
    Langmuir; 2009 Aug; 25(16):9480-6. PubMed ID: 19719230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles deposited on SiO2/Si100: correlation between size, electron structure, and activity in CO oxidation.
    Guczi L; Petö G; Beck A; Frey K; Geszti O; Molnár G; Daróczi C
    J Am Chem Soc; 2003 Apr; 125(14):4332-7. PubMed ID: 12670256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts.
    Zhao D; Xu BQ
    Phys Chem Chem Phys; 2006 Nov; 8(43):5106-14. PubMed ID: 17091161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation.
    Zhang X; Wang H; Xu BQ
    J Phys Chem B; 2005 May; 109(19):9678-83. PubMed ID: 16852166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica.
    Bore MT; Pham HN; Switzer EE; Ward TL; Fukuoka A; Datye AK
    J Phys Chem B; 2005 Feb; 109(7):2873-80. PubMed ID: 16851299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.