These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 20078182)
1. Nanoindentation of virus capsids in a molecular model. Cieplak M; Robbins MO J Chem Phys; 2010 Jan; 132(1):015101. PubMed ID: 20078182 [TBL] [Abstract][Full Text] [Related]
2. Structural transitions in Cowpea chlorotic mottle virus (CCMV). Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622 [TBL] [Abstract][Full Text] [Related]
3. Can the RNA of the cowpea chlorotic mottle virus be released through a channel by means of free diffusion? A test in silico. Isea R; Aponte C; Cipriani R Biophys Chem; 2004 Feb; 107(2):101-6. PubMed ID: 14962592 [TBL] [Abstract][Full Text] [Related]
4. Controlled integration of polymers into viral capsids. Comellas-Aragonès M; de la Escosura A; Dirks AT; van der Ham A; Fusté-Cuñé A; Cornelissen JJ; Nolte RJ Biomacromolecules; 2009 Nov; 10(11):3141-7. PubMed ID: 19839603 [TBL] [Abstract][Full Text] [Related]
5. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. Tama F; Brooks CL J Mol Biol; 2002 May; 318(3):733-47. PubMed ID: 12054819 [TBL] [Abstract][Full Text] [Related]
6. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus. Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194 [TBL] [Abstract][Full Text] [Related]
7. The disassembly, reassembly and stability of CCMV protein capsids. Lavelle L; Michel JP; Gingery M J Virol Methods; 2007 Dec; 146(1-2):311-6. PubMed ID: 17804089 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear finite-element analysis of nanoindentation of viral capsids. Gibbons MM; Klug WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031901. PubMed ID: 17500720 [TBL] [Abstract][Full Text] [Related]
9. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. Speir JA; Bothner B; Qu C; Willits DA; Young MJ; Johnson JE J Virol; 2006 Apr; 80(7):3582-91. PubMed ID: 16537626 [TBL] [Abstract][Full Text] [Related]
10. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts. Wilts BD; Schaap IAT; Schmidt CF Biophys J; 2015 May; 108(10):2541-2549. PubMed ID: 25992732 [TBL] [Abstract][Full Text] [Related]
11. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry. Hommersom CA; Matt B; van der Ham A; Cornelissen JJ; Katsonis N Org Biomol Chem; 2014 Jun; 12(24):4065-9. PubMed ID: 24817149 [TBL] [Abstract][Full Text] [Related]
12. Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. Cieplak M; Robbins MO PLoS One; 2013; 8(6):e63640. PubMed ID: 23785395 [TBL] [Abstract][Full Text] [Related]
17. The crystallographic structure of brome mosaic virus. Lucas RW; Larson SB; McPherson A J Mol Biol; 2002 Mar; 317(1):95-108. PubMed ID: 11916381 [TBL] [Abstract][Full Text] [Related]
18. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry. van Vlijmen HW; Karplus M J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356 [TBL] [Abstract][Full Text] [Related]