BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20079426)

  • 1. Implication of oxidative stress as a cause of autoimmune hemolytic anemia in NZB mice.
    Iuchi Y; Kibe N; Tsunoda S; Suzuki S; Mikami T; Okada F; Uchida K; Fujii J
    Free Radic Biol Med; 2010 Apr; 48(7):935-44. PubMed ID: 20079426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species exacerbate autoimmune hemolytic anemia in New Zealand Black mice.
    Konno T; Otsuki N; Kurahashi T; Kibe N; Tsunoda S; Iuchi Y; Fujii J
    Free Radic Biol Med; 2013 Dec; 65():1378-1384. PubMed ID: 24095725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SOD1 transgene expressed in erythroid cells alleviates fatal phenotype in congenic NZB/NZW-F1 mice.
    Otsuki N; Konno T; Kurahashi T; Suzuki S; Lee J; Okada F; Iuchi Y; Homma T; Fujii J
    Free Radic Res; 2016 Jul; 50(7):793-800. PubMed ID: 27080108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rescue of anaemia and autoimmune responses in SOD1-deficient mice by transgenic expression of human SOD1 in erythrocytes.
    Iuchi Y; Okada F; Takamiya R; Kibe N; Tsunoda S; Nakajima O; Toyoda K; Nagae R; Suematsu M; Soga T; Uchida K; Fujii J
    Biochem J; 2009 Aug; 422(2):313-20. PubMed ID: 19515016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress as a potential causal factor for autoimmune hemolytic anemia and systemic lupus erythematosus.
    Fujii J; Kurahashi T; Konno T; Homma T; Iuchi Y
    World J Nephrol; 2015 May; 4(2):213-22. PubMed ID: 25949934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective increase of autoimmune epitope expression on aged erythrocytes in mice: implications in anti-erythrocyte autoimmune responses.
    Fossati-Jimack L; Azeredo da Silveira S; Moll T; Kina T; Kuypers FA; Oldenborg PA; Reininger L; Izui S
    J Autoimmun; 2002 Feb; 18(1):17-25. PubMed ID: 11869043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoreactive T cell specificity in autoimmune hemolytic anemia of the NZB mouse.
    Perry FE; Barker RN; Mazza G; Day MJ; Wells AD; Shen CR; Schofield AE; Elson CJ
    Eur J Immunol; 1996 Jan; 26(1):136-41. PubMed ID: 8566056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOD1 deficiency decreases proteasomal function, leading to the accumulation of ubiquitinated proteins in erythrocytes.
    Homma T; Kurahashi T; Lee J; Kang ES; Fujii J
    Arch Biochem Biophys; 2015 Oct; 583():65-72. PubMed ID: 26264915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production.
    Iuchi Y; Okada F; Onuma K; Onoda T; Asao H; Kobayashi M; Fujii J
    Biochem J; 2007 Mar; 402(2):219-27. PubMed ID: 17059387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse.
    Chatterjee S; Bhardwaj N; Saxena RK
    PLoS One; 2016; 11(11):e0166878. PubMed ID: 27870894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enlargement of Lyt-2-positive T cells is associated with functional impairment and autoimmune hemolytic anemia in New Zealand Black mice.
    McCoy KL; Baker PJ; Malek TR; Chused TM
    J Immunol; 1985 Oct; 135(4):2432-7. PubMed ID: 3928748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOD1 deficiency induces the systemic hyperoxidation of peroxiredoxin in the mouse.
    Homma T; Okano S; Lee J; Ito J; Otsuki N; Kurahashi T; Kang ES; Nakajima O; Fujii J
    Biochem Biophys Res Commun; 2015 Aug; 463(4):1040-6. PubMed ID: 26079888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous production of anti-mouse red blood cell autoantibodies is independent of the polyclonal activation in NZB mice.
    Reininger L; Shibata T; Schurmans S; Merino R; Fossati L; Lacour M; Izui S
    Eur J Immunol; 1990 Nov; 20(11):2405-10. PubMed ID: 2253680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-erythrocyte autoimmune response of NZB mice. Identification of two distinct autoantigens.
    Diiulio NA; Fairchild RL; Caulfield MJ
    Immunology; 1997 Jun; 91(2):246-51. PubMed ID: 9227324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of the dominant autoantigen in NZB mice with autoimmune hemolytic anemia: effects on autoantibody and T-helper responses.
    Hall AM; Ward FJ; Shen CR; Rowe C; Bowie L; Devine A; Urbaniak SJ; Elson CJ; Barker RN
    Blood; 2007 Dec; 110(13):4511-7. PubMed ID: 17785581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic regulation of anti-erythrocyte autoantibodies and splenomegaly in autoimmune hemolytic anemia-prone new zealand black mice.
    Ochiai K; Ozaki S; Tanino A; Watanabe S; Ueno T; Mitsui K; Toei J; Inada Y; Hirose S; Shirai T; Nishimura H
    Int Immunol; 2000 Jan; 12(1):1-8. PubMed ID: 10607744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoimmune hemolytic anemia.
    Izui S
    Curr Opin Immunol; 1994 Dec; 6(6):926-30. PubMed ID: 7710716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury.
    Xu W; Chi L; Xu R; Ke Y; Luo C; Cai J; Qiu M; Gozal D; Liu R
    Spinal Cord; 2005 Apr; 43(4):204-13. PubMed ID: 15520836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-33 reflects dynamics of disease activity in patients with autoimmune hemolytic anemia by regulating autoantibody production.
    Bu X; Zhang T; Wang C; Ren T; Wen Z
    J Transl Med; 2015 Dec; 13():381. PubMed ID: 26675669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of erythrocyte autoantibodies in NZB mice: spectrotype and relationship with the Xid gene.
    Bray KR; Gershwin ME; Castles JJ; Ohsugi Y
    Exp Clin Immunogenet; 1984; 1(2):83-9. PubMed ID: 6400995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.