BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20079525)

  • 41. Enigmatic central canal contacting cells: immature neurons in "standby mode"?
    Marichal N; García G; Radmilovich M; Trujillo-Cenóz O; Russo RE
    J Neurosci; 2009 Aug; 29(32):10010-24. PubMed ID: 19675235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell proliferation in the lamprey central nervous system.
    Vidal Pizarro I; Swain GP; Selzer ME
    J Comp Neurol; 2004 Feb; 469(2):298-310. PubMed ID: 14694540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oligodendrocytes and radial glia derived from adult rat spinal cord progenitors: morphological and immunocytochemical characterization.
    Kulbatski I; Mothe AJ; Keating A; Hakamata Y; Kobayashi E; Tator CH
    J Histochem Cytochem; 2007 Mar; 55(3):209-22. PubMed ID: 17101728
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ependymal/subventricular zone cells migrate to the peri-infarct region and differentiate into neurons and astrocytes after focal cerebral ischemia in adult rats.
    Zhang PB; Liu Y; Li J; Kang QY; Tian YF; Chen XL; Zhao JJ; Shi QD; Song TS; Qian YH
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Oct; 25(10):1201-6. PubMed ID: 16234089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular heterogeneity in the ependymal layer of the chicken's lumbosacral spinal cord.
    Schueren AM; DeSantis M
    Exp Neurol; 1985 Feb; 87(2):387-91. PubMed ID: 3967723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biciliated ependymal cell proliferation contributes to spinal cord growth.
    Alfaro-Cervello C; Soriano-Navarro M; Mirzadeh Z; Alvarez-Buylla A; Garcia-Verdugo JM
    J Comp Neurol; 2012 Oct; 520(15):3528-52. PubMed ID: 22434575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The fine structure of the spinal cord in human embryos and early fetuses.
    Wozniak W; O'Rahilly R; Olszewska B
    J Hirnforsch; 1980; 21(1):101-24. PubMed ID: 7381194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Embryonic development of choline acetyltransferase in thoracic spinal motor neurons: somatic and autonomic neurons may be derived from a common cellular group.
    Phelps PE; Barber RP; Vaughn JE
    J Comp Neurol; 1991 May; 307(1):77-86. PubMed ID: 1856322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats.
    Shibuya S; Miyamoto O; Itano T; Mori S; Norimatsu H
    Glia; 2003 Apr; 42(2):172-83. PubMed ID: 12655601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transient expression of glial-fibrillary acidic protein (GFAP) in the ependyma of the regenerating spinal cord in adult newts.
    Margotta V; Fonti R; Palladini G; Filoni S; Lauro GM
    J Hirnforsch; 1991; 32(4):485-90. PubMed ID: 1802931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle.
    Xu Y; Tamamaki N; Noda T; Kimura K; Itokazu Y; Matsumoto N; Dezawa M; Ide C
    Exp Neurol; 2005 Apr; 192(2):251-64. PubMed ID: 15755543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ependymal cells variations in the central canal of the rat spinal cord filum terminale: an ultrastructural investigation.
    Mitro A; Gallatz K; Palkovits M; Kiss A
    Endocr Regul; 2013 Apr; 47(2):93-9. PubMed ID: 23641790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ontogeny of adrenergic fibers in rat spinal cord in relationship to adrenal preganglionic neurons.
    Bernstein-Goral H; Bohn MC
    J Neurosci Res; 1988; 21(2-4):333-51. PubMed ID: 3216427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ependymal cells in the spinal cord as neuronal progenitors.
    Moreno-Manzano V
    Curr Opin Pharmacol; 2020 Feb; 50():82-87. PubMed ID: 31901616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone.
    Danilov AI; Gomes-Leal W; Ahlenius H; Kokaia Z; Carlemalm E; Lindvall O
    Glia; 2009 Jan; 57(2):136-52. PubMed ID: 18709646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Comparative scanning and transmission electron microscopy studies of the ependyma of the central canal in the spinal cord of primates. I. Electron optical image of the ependyma in the central canal of the spinal cord of the callithrix monkey (Callithrix jacchus, Linné 1758)].
    Erhardt H; Meinel W
    Gegenbaurs Morphol Jahrb; 1986; 132(4):535-54. PubMed ID: 3098621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions.
    Lacroix S; Hamilton LK; Vaugeois A; Beaudoin S; Breault-Dugas C; Pineau I; Lévesque SA; Grégoire CA; Fernandes KJ
    PLoS One; 2014; 9(1):e85916. PubMed ID: 24475059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Caudal spinal cord of the teleost Sternarchus albifrons resembles regenerating cord.
    Anderson MJ; Waxman SG
    Anat Rec; 1983 Jan; 205(1):85-92. PubMed ID: 6837938
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neurogenesis and gliogenesis in the spinal cord of turtles.
    Fernández A; Radmilovich M; Trujillo-Cenóz O
    J Comp Neurol; 2002 Nov; 453(2):131-44. PubMed ID: 12373779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord.
    Jendelová P; Herynek V; Urdzíková L; Glogarová K; Kroupová J; Andersson B; Bryja V; Burian M; Hájek M; Syková E
    J Neurosci Res; 2004 Apr; 76(2):232-43. PubMed ID: 15048921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.