These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20079553)

  • 1. Geochemical and environmental controls on the genesis of soluble efflorescent salts in coastal mine tailings deposits: a discussion based on reactive transport modeling.
    Bea SA; Ayora C; Carrera J; Saaltink MW; Dold B
    J Contam Hydrol; 2010 Jan; 111(1-4):65-82. PubMed ID: 20079553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Element flows associated with marine shore mine tailings deposits.
    Dold B
    Environ Sci Technol; 2006 Feb; 40(3):752-8. PubMed ID: 16509314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary via its major tributaries.
    Masson M; Blanc G; Schäfer J
    Sci Total Environ; 2006 Oct; 370(1):133-46. PubMed ID: 16879859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical interactions between process-affected water from oil sands tailings ponds and North Alberta surficial sediments.
    Holden AA; Donahue RB; Ulrich AC
    J Contam Hydrol; 2011 Jan; 119(1-4):55-68. PubMed ID: 20980071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.
    Müller G
    Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site.
    Concas A; Ardau C; Cristini A; Zuddas P; Cao G
    Chemosphere; 2006 Apr; 63(2):244-53. PubMed ID: 16216301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groundwater pollution on the Zambian Copperbelt: deciphering the source and the risk.
    von der Heyden CJ; New MG
    Sci Total Environ; 2004 Jul; 327(1-3):17-30. PubMed ID: 15172568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile.
    Ramirez M; Massolo S; Frache R; Correa JA
    Mar Pollut Bull; 2005 Jan; 50(1):62-72. PubMed ID: 15664034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sorption of heavy metal species by sediments in soakaways receiving urban road runoff.
    Murakami M; Nakajima F; Furumai H
    Chemosphere; 2008 Feb; 70(11):2099-109. PubMed ID: 17959221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.
    Butler BA; Ranville JF; Ross PE
    Water Res; 2008 Jun; 42(12):3135-45. PubMed ID: 18433827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China.
    Ip CC; Li XD; Zhang G; Wai OW; Li YS
    Environ Pollut; 2007 May; 147(2):311-23. PubMed ID: 17000039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic mine drainage from Asia's biggest copper mine at Malanjkhand, India.
    Pandey PK; Sharma R; Roy M; Pandey M
    Environ Geochem Health; 2007 Jun; 29(3):237-48. PubMed ID: 17279451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural attenuation processes in two water reservoirs receiving acid mine drainage.
    Sarmiento AM; Olías M; Nieto JM; Cánovas CR; Delgado J
    Sci Total Environ; 2009 Mar; 407(6):2051-62. PubMed ID: 19073338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal release from bottom sediments of Ocoee Lake No. 3, a primary catchment area for the Ducktown Mining District.
    Lee G; Faure G; Bigham JM; Williams DJ
    J Environ Qual; 2008; 37(2):344-52. PubMed ID: 18268296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.