These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 20079556)

  • 21. Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants.
    Fletcher ML; Wilson DA
    J Neurosci; 2002 Jan; 22(2):RC201. PubMed ID: 11784813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb.
    Hamamoto M; Kiyokage E; Sohn J; Hioki H; Harada T; Toida K
    J Comp Neurol; 2017 Feb; 525(3):574-591. PubMed ID: 27491021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Odor enrichment increases interneurons responsiveness in spatially defined regions of the olfactory bulb correlated with perception.
    Mandairon N; Didier A; Linster C
    Neurobiol Learn Mem; 2008 Jul; 90(1):178-84. PubMed ID: 18406178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An olfactory recognition model based on spatio-temporal encoding of odor quality in the olfactory bulb.
    Hoshino O; Kashimori Y; Kambara T
    Biol Cybern; 1998 Aug; 79(2):109-20. PubMed ID: 9791931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Normalized Neural Representations of Complex Odors.
    Zwicker D
    PLoS One; 2016; 11(11):e0166456. PubMed ID: 27835696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioral and cellular markers of olfactory aging and their response to enrichment.
    Rey NL; Sacquet J; Veyrac A; Jourdan F; Didier A
    Neurobiol Aging; 2012 Mar; 33(3):626.e9-626.e23. PubMed ID: 21601953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Choline Transporter regulates olfactory habituation via a neuronal triad of excitatory, inhibitory and mushroom body neurons.
    Hamid R; Sant HS; Kulkarni MN
    PLoS Genet; 2021 Dec; 17(12):e1009938. PubMed ID: 34914708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topographical representation of odor hedonics in the olfactory bulb.
    Kermen F; Midroit M; Kuczewski N; Forest J; Thévenet M; Sacquet J; Benetollo C; Richard M; Didier A; Mandairon N
    Nat Neurosci; 2016 Jul; 19(7):876-8. PubMed ID: 27273767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation.
    Ogg MC; Ross JM; Bendahmane M; Fletcher ML
    Nat Commun; 2018 May; 9(1):1868. PubMed ID: 29760390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Odor-driven activity in the olfactory cortex of an in vitro isolated guinea pig whole brain with olfactory epithelium.
    Ishikawa T; Sato T; Shimizu A; Tsutsui K; de Curtis M; Iijima T
    J Neurophysiol; 2007 Jan; 97(1):670-9. PubMed ID: 16870834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broad activation of the olfactory bulb produces long-lasting changes in odor perception.
    Mandairon N; Stack C; Kiselycznyk C; Linster C
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13543-8. PubMed ID: 16938883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.
    Hellier JL; Arevalo NL; Smith L; Xiong KN; Restrepo D
    PLoS One; 2012; 7(4):e35251. PubMed ID: 22514723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats.
    Oruro EM; Pardo GVE; Lucion AB; Calcagnotto ME; Idiart MAP
    Learn Mem; 2020 Jan; 27(1):20-32. PubMed ID: 31843979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning modifies odor mixture processing to improve detection of relevant components.
    Chen JY; Marachlian E; Assisi C; Huerta R; Smith BH; Locatelli F; Bazhenov M
    J Neurosci; 2015 Jan; 35(1):179-97. PubMed ID: 25568113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholinergic modulation of olfactory pattern separation.
    Chapuis J; Wilson DA
    Neurosci Lett; 2013 Jun; 545():50-3. PubMed ID: 23624024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple and opposing roles of cholinergic transmission in the main olfactory bulb.
    Castillo PE; Carleton A; Vincent JD; Lledo PM
    J Neurosci; 1999 Nov; 19(21):9180-91. PubMed ID: 10531421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental and aging aspects of the cholinergic innervation of the olfactory bulb.
    Durand M; Coronas V; Jourdan F; Quirion R
    Int J Dev Neurosci; 1998; 16(7-8):777-85. PubMed ID: 10198824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related differences in perception and coding of attractive odorants in mice.
    Chalençon L; Midroit M; Athanassi A; Thevenet M; Breton M; Forest J; Richard M; Didier A; Mandairon N
    Neurobiol Aging; 2024 May; 137():8-18. PubMed ID: 38394723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli.
    Kim R; Ananth MR; Desai NS; Role LW; Talmage DA
    Cell Rep; 2024 Apr; 43(4):114009. PubMed ID: 38536818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.