These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 20079762)
1. Answer to the "comment on functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse" by Stefan Bittner et al. [Immunol. Lett. 125 (Aug 15 (2)) (2009) 156-157]. Hajdú P; Szilágyi O; Tóth A; Krasznai Z; Pocsai K; Panyi G Immunol Lett; 2010 Mar; 129(1):47-9. PubMed ID: 20079762 [No Abstract] [Full Text] [Related]
2. Comment on "Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse". Bittner S; Wiendl H; Meuth SG Immunol Lett; 2009 Aug; 125(2):156-7. PubMed ID: 19595706 [TBL] [Abstract][Full Text] [Related]
3. Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Tóth A; Szilágyi O; Krasznai Z; Panyi G; Hajdú P Immunol Lett; 2009 Jun; 125(1):15-21. PubMed ID: 19477198 [TBL] [Abstract][Full Text] [Related]
4. Lymphocyte activation in type 1 diabetes mellitus: the increased significance of Kv1.3 potassium channels. Toldi G; Vásárhelyi B; Kaposi A; Mészáros G; Pánczél P; Hosszufalusi N; Tulassay T; Treszl A Immunol Lett; 2010 Sep; 133(1):35-41. PubMed ID: 20603149 [TBL] [Abstract][Full Text] [Related]
5. The effects of Kv1.3 and IKCa1 potassium channel inhibition on calcium influx of human peripheral T lymphocytes in rheumatoid arthritis. Toldi G; Bajnok A; Dobi D; Kaposi A; Kovács L; Vásárhelyi B; Balog A Immunobiology; 2013 Mar; 218(3):311-6. PubMed ID: 22705192 [TBL] [Abstract][Full Text] [Related]
6. T-lymphocyte calcium influx characteristics and their modulation by Kv1.3 and IKCa1 channel inhibitors in the neonate. Toldi G; Treszl A; Pongor V; Gyarmati B; Tulassay T; Vásárhelyi B Int Immunol; 2010 Sep; 22(9):769-74. PubMed ID: 20601376 [TBL] [Abstract][Full Text] [Related]
7. Different calcium influx characteristics upon Kv1.3 and IKCa1 potassium channel inhibition in T helper subsets. Orbán C; Bajnok A; Vásárhelyi B; Tulassay T; Toldi G Cytometry A; 2014 Jul; 85(7):636-41. PubMed ID: 24827427 [TBL] [Abstract][Full Text] [Related]
8. A new Kaliotoxin selective towards Kv1.3 and Kv1.2 but not Kv1.1 channels expressed in oocytes. Abbas N; Belghazi M; Abdel-Mottaleb Y; Tytgat J; Bougis PE; Martin-Eauclaire MF Biochem Biophys Res Commun; 2008 Nov; 376(3):525-30. PubMed ID: 18804453 [TBL] [Abstract][Full Text] [Related]
9. Targeting the ion channel Kv1.3 with scorpion venom peptides engineered for potency, selectivity, and half-life. Edwards W; Fung-Leung WP; Huang C; Chi E; Wu N; Liu Y; Maher MP; Bonesteel R; Connor J; Fellows R; Garcia E; Lee J; Lu L; Ngo K; Scott B; Zhou H; Swanson RV; Wickenden AD J Biol Chem; 2014 Aug; 289(33):22704-22714. PubMed ID: 24939846 [TBL] [Abstract][Full Text] [Related]
10. The two-pore domain K2 P channel TASK2 drives human NK-cell proliferation and cytolytic function. Schulte-Mecklenbeck A; Bittner S; Ehling P; Döring F; Wischmeyer E; Breuer J; Herrmann AM; Wiendl H; Meuth SG; Gross CC Eur J Immunol; 2015 Sep; 45(9):2602-14. PubMed ID: 26140335 [TBL] [Abstract][Full Text] [Related]
11. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Pucca MB; Bertolini TB; Cerni FA; Bordon KC; Peigneur S; Tytgat J; Bonato VL; Arantes EC Immunology; 2016 Feb; 147(2):240-50. PubMed ID: 26595158 [TBL] [Abstract][Full Text] [Related]
12. Differential calcium signaling and Kv1.3 trafficking to the immunological synapse in systemic lupus erythematosus. Nicolaou SA; Neumeier L; Takimoto K; Lee SM; Duncan HJ; Kant SK; Mongey AB; Filipovich AH; Conforti L Cell Calcium; 2010 Jan; 47(1):19-28. PubMed ID: 19959227 [TBL] [Abstract][Full Text] [Related]
13. A role for TASK2 channels in the human immunological synapse. Fernández-Orth J; Rolfes L; Gola L; Bittner S; Andronic J; Sukhorukov VL; Sisario D; Landgraf P; Dieterich DC; Cerina M; Smalla KH; Kähne T; Budde T; Kovac S; Ruck T; Sauer M; Meuth SG Eur J Immunol; 2021 Feb; 51(2):342-353. PubMed ID: 33169379 [TBL] [Abstract][Full Text] [Related]
14. A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus. Corzo G; Papp F; Varga Z; Barraza O; Espino-Solis PG; Rodríguez de la Vega RC; Gaspar R; Panyi G; Possani LD Biochem Pharmacol; 2008 Oct; 76(9):1142-54. PubMed ID: 18786511 [TBL] [Abstract][Full Text] [Related]
15. Solid phase synthesis, NMR structure determination of α-KTx3.8, its in silico docking to Kv1.x potassium channels, and electrophysiological analysis provide insights into toxin-channel selectivity. Kohl B; Rothenberg I; Ali SA; Alam M; Seebohm G; Kalbacher H; Voelter W; Stoll R Toxicon; 2015 Jul; 101():70-8. PubMed ID: 25953725 [TBL] [Abstract][Full Text] [Related]
16. Localization of Kv1.3 channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. Nicolaou SA; Neumeier L; Steckly A; Kucher V; Takimoto K; Conforti L J Immunol; 2009 Nov; 183(10):6296-302. PubMed ID: 19841189 [TBL] [Abstract][Full Text] [Related]
17. The Scorpion Toxin Analogue BmKTX-D33H as a Potential Kv1.3 Channel-Selective Immunomodulator for Autoimmune Diseases. Ye F; Hu Y; Yu W; Xie Z; Hu J; Cao Z; Li W; Wu Y Toxins (Basel); 2016 Apr; 8(4):115. PubMed ID: 27104568 [TBL] [Abstract][Full Text] [Related]
18. Identification of a new specific Kv1.3 channel blocker, Ctri9577, from the scorpion Chaerilus tricostatus. Xie S; Feng J; Yu C; Li Z; Wu Y; Cao Z; Li W; He X; Xiang M; Han S Peptides; 2012 Jul; 36(1):94-9. PubMed ID: 22580271 [TBL] [Abstract][Full Text] [Related]