These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 20079903)
1. AT1 blockade attenuates atherosclerotic plaque destabilization accompanied by the suppression of cathepsin S activity in apoE-deficient mice. Sasaki T; Kuzuya M; Nakamura K; Cheng XW; Hayashi T; Song H; Hu L; Okumura K; Murohara T; Iguchi A; Sato K Atherosclerosis; 2010 Jun; 210(2):430-7. PubMed ID: 20079903 [TBL] [Abstract][Full Text] [Related]
2. Angiotensin type 1 receptor blocker reduces intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Cheng XW; Song H; Sasaki T; Hu L; Inoue A; Bando YK; Shi GP; Kuzuya M; Okumura K; Murohara T Hypertension; 2011 May; 57(5):981-9. PubMed ID: 21464389 [TBL] [Abstract][Full Text] [Related]
3. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Iwai M; Chen R; Li Z; Shiuchi T; Suzuki J; Ide A; Tsuda M; Okumura M; Min LJ; Mogi M; Horiuchi M Circulation; 2005 Sep; 112(11):1636-43. PubMed ID: 16145000 [TBL] [Abstract][Full Text] [Related]
4. Renin inhibition reduces atherosclerotic plaque neovessel formation and regresses advanced atherosclerotic plaques. Wu H; Cheng XW; Hu L; Hao CN; Hayashi M; Takeshita K; Hamrah MS; Shi GP; Kuzuya M; Murohara T Atherosclerosis; 2014 Dec; 237(2):739-47. PubMed ID: 25463114 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory effects of AT1 receptor blocker, olmesartan, and estrogen on atherosclerosis via anti-oxidative stress. Tsuda M; Iwai M; Li JM; Li HS; Min LJ; Ide A; Okumura M; Suzuki J; Mogi M; Suzuki H; Horiuchi M Hypertension; 2005 Apr; 45(4):545-51. PubMed ID: 15723967 [TBL] [Abstract][Full Text] [Related]
6. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice. Nakashiro S; Matoba T; Umezu R; Koga J; Tokutome M; Katsuki S; Nakano K; Sunagawa K; Egashira K Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):491-500. PubMed ID: 26821947 [TBL] [Abstract][Full Text] [Related]
7. Pharmacological inhibition of cathepsin S decreases atherosclerotic lesions in Apoe-/- mice. Samokhin AO; Lythgo PA; Gauthier JY; Percival MD; Brömme D J Cardiovasc Pharmacol; 2010 Jul; 56(1):98-105. PubMed ID: 20410833 [TBL] [Abstract][Full Text] [Related]
8. Olmesartan, a novel angiotensin II type 1 receptor antagonist, reduces severity of atherosclerosis in apolipoprotein E deficient mice associated with reducing superoxide production. Shimada K; Murayama T; Yokode M; Kita T; Fujita M; Kishimoto C Nutr Metab Cardiovasc Dis; 2011 Sep; 21(9):672-8. PubMed ID: 20399087 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of renin-angiotensin system attenuates periadventitial inflammation and reduces atherosclerotic lesion formation. Fukuda D; Enomoto S; Nagai R; Sata M Biomed Pharmacother; 2009 Dec; 63(10):754-61. PubMed ID: 19304450 [TBL] [Abstract][Full Text] [Related]
10. [Impact of olmesartan medoxomil on atherosclerosis lesions in apolipoprotein E knockout mice]. Li H; Shi LY; Chen L; Lu YZ; Yu B; Qi GX Zhonghua Yi Xue Za Zhi; 2016 Aug; 96(31):2502-6. PubMed ID: 27562051 [TBL] [Abstract][Full Text] [Related]
11. Valsartan Promoting Atherosclerotic Plaque Stabilization by Upregulating Renalase: A Potential-Related Gene of Atherosclerosis. Zhou M; Ma C; Liu W; Liu H; Wang N; Kang Q; Li P J Cardiovasc Pharmacol Ther; 2015 Sep; 20(5):509-19. PubMed ID: 25818930 [TBL] [Abstract][Full Text] [Related]
12. Superoxide-dependent cathepsin activation is associated with hypertensive myocardial remodeling and represents a target for angiotensin II type 1 receptor blocker treatment. Cheng XW; Murohara T; Kuzuya M; Izawa H; Sasaki T; Obata K; Nagata K; Nishizawa T; Kobayashi M; Yamada T; Kim W; Sato K; Shi GP; Okumura K; Yokota M Am J Pathol; 2008 Aug; 173(2):358-69. PubMed ID: 18583318 [TBL] [Abstract][Full Text] [Related]
13. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease. Figueiredo JL; Aikawa M; Zheng C; Aaron J; Lax L; Libby P; de Lima Filho JL; Gruener S; Fingerle J; Haap W; Hartmann G; Aikawa E Am J Pathol; 2015 Apr; 185(4):1156-66. PubMed ID: 25680278 [TBL] [Abstract][Full Text] [Related]
14. Destabilizing role of cathepsin S in murine atherosclerotic plaques. Rodgers KJ; Watkins DJ; Miller AL; Chan PY; Karanam S; Brissette WH; Long CJ; Jackson CL Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):851-6. PubMed ID: 16410454 [TBL] [Abstract][Full Text] [Related]
15. The angiotensin receptor blocker, telmisartan, reduces and stabilizes atherosclerosis in ApoE and AT1aR double deficient mice. Fukuda D; Enomoto S; Hirata Y; Nagai R; Sata M Biomed Pharmacother; 2010 Dec; 64(10):712-7. PubMed ID: 20970951 [TBL] [Abstract][Full Text] [Related]
16. Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Samokhin AO; Wong A; Saftig P; Brömme D Atherosclerosis; 2008 Sep; 200(1):58-68. PubMed ID: 18291403 [TBL] [Abstract][Full Text] [Related]
17. Mouse models of plaque rupture. Matoba T; Sato K; Egashira K Curr Opin Lipidol; 2013 Oct; 24(5):419-25. PubMed ID: 23942269 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of the AT2 receptor reduced atherogenesis in ApoE(-/-)/AT1A(-/-) double knock out mice. Tiyerili V; Mueller CF; Becher UM; Czech T; van Eickels M; Daiber A; Nickenig G; Wassmann S J Mol Cell Cardiol; 2012 Mar; 52(3):630-7. PubMed ID: 22230040 [TBL] [Abstract][Full Text] [Related]
19. Endogenous activated angiotensin-(1-7) plays a protective effect against atherosclerotic plaques unstability in high fat diet fed ApoE knockout mice. Yang J; Yang X; Meng X; Dong M; Guo T; Kong J; Zhang K; Zhang Y; Zhang C Int J Cardiol; 2015 Apr; 184():645-652. PubMed ID: 25771230 [TBL] [Abstract][Full Text] [Related]
20. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Lutgens E; Lutgens SP; Faber BC; Heeneman S; Gijbels MM; de Winther MP; Frederik P; van der Made I; Daugherty A; Sijbers AM; Fisher A; Long CJ; Saftig P; Black D; Daemen MJ; Cleutjens KB Circulation; 2006 Jan; 113(1):98-107. PubMed ID: 16365196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]