These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 20080139)
21. A20 silencing by lipid envelope-type nanoparticles enhances the efficiency of lipopolysaccharide-activated dendritic cells. Warashina S; Nakamura T; Harashima H Biol Pharm Bull; 2011; 34(8):1348-51. PubMed ID: 21804231 [TBL] [Abstract][Full Text] [Related]
22. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice. Guo J; Cheng WP; Gu J; Ding C; Qu X; Yang Z; O'Driscoll C Eur J Pharm Sci; 2012 Apr; 45(5):521-32. PubMed ID: 22186295 [TBL] [Abstract][Full Text] [Related]
23. Ornithine and tryptophan analogs as efficient polycations for short interference RNA delivery to tumor cells. Sato Y; Hatakeyama H; Harashima H Biol Pharm Bull; 2010; 33(7):1246-9. PubMed ID: 20606322 [TBL] [Abstract][Full Text] [Related]
24. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery. Wang XL; Xu R; Lu ZR J Control Release; 2009 Mar; 134(3):207-13. PubMed ID: 19135104 [TBL] [Abstract][Full Text] [Related]
25. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Pittella F; Zhang M; Lee Y; Kim HJ; Tockary T; Osada K; Ishii T; Miyata K; Nishiyama N; Kataoka K Biomaterials; 2011 Apr; 32(11):3106-14. PubMed ID: 21272932 [TBL] [Abstract][Full Text] [Related]
26. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Benfer M; Kissel T Eur J Pharm Biopharm; 2012 Feb; 80(2):247-56. PubMed ID: 22085653 [TBL] [Abstract][Full Text] [Related]
27. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. Sato Y; Hatakeyama H; Sakurai Y; Hyodo M; Akita H; Harashima H J Control Release; 2012 Nov; 163(3):267-76. PubMed ID: 23000694 [TBL] [Abstract][Full Text] [Related]
28. New packaging method of mycobacterial cell wall using octaarginine-modified liposomes: enhanced uptake by and immunostimulatory activity of dendritic cells. Homhuan A; Kogure K; Akaza H; Futaki S; Naka T; Fujita Y; Yano I; Harashima H J Control Release; 2007 Jul; 120(1-2):60-9. PubMed ID: 17467840 [TBL] [Abstract][Full Text] [Related]
29. Non-linear pharmacokinetics of octaarginine-modified lipid nanoparticles: barriers from in vitro to in vivo. Hayashi Y; Noguchi Y; Harashima H J Control Release; 2012 Aug; 161(3):757-62. PubMed ID: 22641061 [TBL] [Abstract][Full Text] [Related]
30. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug. Beh CW; Seow WY; Wang Y; Zhang Y; Ong ZY; Ee PL; Yang YY Biomacromolecules; 2009 Jan; 10(1):41-8. PubMed ID: 19072631 [TBL] [Abstract][Full Text] [Related]
31. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Golan M; Feinshtein V; David A Eur J Pharm Biopharm; 2016 Dec; 109():103-112. PubMed ID: 27702685 [TBL] [Abstract][Full Text] [Related]
32. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. El-Sayed A; Khalil IA; Kogure K; Futaki S; Harashima H J Biol Chem; 2008 Aug; 283(34):23450-61. PubMed ID: 18550548 [TBL] [Abstract][Full Text] [Related]
33. Pretreatment of hepatocyte growth factor gene transfer mediated by octaarginine peptide-modified nanoparticles ameliorates LPS/D-galactosamine-induced hepatitis. Hayashi Y; Mizuno R; Ikramy KA; Akita H; Harashima H Nucleic Acid Ther; 2012 Oct; 22(5):360-3. PubMed ID: 22963044 [TBL] [Abstract][Full Text] [Related]
34. Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. Hossain S; Stanislaus A; Chua MJ; Tada S; Tagawa Y; Chowdhury EH; Akaike T J Control Release; 2010 Oct; 147(1):101-8. PubMed ID: 20620182 [TBL] [Abstract][Full Text] [Related]
35. "Pathogen-mimicking" nanoparticles for vaccine delivery to dendritic cells. Elamanchili P; Lutsiak CM; Hamdy S; Diwan M; Samuel J J Immunother; 2007; 30(4):378-95. PubMed ID: 17457213 [TBL] [Abstract][Full Text] [Related]
36. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Pirollo KF; Rait A; Zhou Q; Hwang SH; Dagata JA; Zon G; Hogrefe RI; Palchik G; Chang EH Cancer Res; 2007 Apr; 67(7):2938-43. PubMed ID: 17409398 [TBL] [Abstract][Full Text] [Related]
37. siRNA specific delivery system for targeting dendritic cells. Zheng X; Vladau C; Shunner A; Min WP Methods Mol Biol; 2010; 623():173-88. PubMed ID: 20217551 [TBL] [Abstract][Full Text] [Related]
38. Reducing the Cytotoxicity of Lipid Nanoparticles Associated with a Fusogenic Cationic Lipid in a Natural Killer Cell Line by Introducing a Polycation-Based siRNA Core. Nakamura T; Yamada K; Fujiwara Y; Sato Y; Harashima H Mol Pharm; 2018 Jun; 15(6):2142-2150. PubMed ID: 29668291 [TBL] [Abstract][Full Text] [Related]
39. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Lin D; Huang Y; Jiang Q; Zhang W; Yue X; Guo S; Xiao P; Du Q; Xing J; Deng L; Liang Z; Dong A Biomaterials; 2011 Nov; 32(33):8730-42. PubMed ID: 21885115 [TBL] [Abstract][Full Text] [Related]
40. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. Sakurai Y; Hatakeyama H; Sato Y; Hyodo M; Akita H; Ohga N; Hida K; Harashima H J Control Release; 2014 Jan; 173():110-8. PubMed ID: 24120854 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]