These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20080161)

  • 1. Dextran-glycidyltrimethylammonium chloride conjugate/DNA nanoplex: A potential non-viral and haemocompatible gene delivery system.
    Thomas JJ; Rekha MR; Sharma CP
    Int J Pharm; 2010 Apr; 389(1-2):195-206. PubMed ID: 20080161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dextran-protamine polycation: an efficient nonviral and haemocompatible gene delivery system.
    Thomas JJ; Rekha MR; Sharma CP
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):195-205. PubMed ID: 20656464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pullulan-protamine as efficient haemocompatible gene delivery vector: synthesis and in vitro characterization.
    Priya SS; Rekha MR; Sharma CP
    Carbohydr Polym; 2014 Feb; 102():207-15. PubMed ID: 24507274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dextran-protamine-solid lipid nanoparticles as a non-viral vector for gene therapy: in vitro characterization and in vivo transfection after intravenous administration to mice.
    Delgado D; Gascón AR; Del Pozo-Rodríguez A; Echevarría E; Ruiz de Garibay AP; Rodríguez JM; Solinís MÁ
    Int J Pharm; 2012 Apr; 425(1-2):35-43. PubMed ID: 22226874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of transgene expression and the relative buffering capacity of dextran-grafted polyethylenimine.
    Tseng WC; Fang TY; Su LY; Tang CH
    Mol Pharm; 2005; 2(3):224-32. PubMed ID: 15934783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear polycations by ring-opening polymerization as non-viral gene delivery vectors.
    Zhang QF; Yi WJ; Wang B; Zhang J; Ren L; Chen QM; Guo L; Yu XQ
    Biomaterials; 2013 Jul; 34(21):5391-401. PubMed ID: 23582685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles.
    Li GF; Wang JC; Feng XM; Liu ZD; Jiang CY; Yang JD
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3244-57. PubMed ID: 25686559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of oligochitosan-tragacanth nanoparticles as a novel gene carrier.
    Fattahi A; Sadrjavadi K; Golozar MA; Varshosaz J; Fathi MH; Mirmohammad-Sadeghi H
    Carbohydr Polym; 2013 Sep; 97(2):277-83. PubMed ID: 23911446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery.
    Mai K; Zhang S; Liang B; Gao C; Du W; Zhang LM
    Carbohydr Polym; 2015 Jun; 123():237-45. PubMed ID: 25843855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-responsive cationic block copolymers as nanocarriers for gene delivery.
    Calejo MT; Cardoso AM; Kjøniksen AL; Zhu K; Morais CM; Sande SA; Cardoso AL; Lima MC; Jurado A; Nyström B
    Int J Pharm; 2013 May; 448(1):105-14. PubMed ID: 23524085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid lipid nanoparticles: formulation factors affecting cell transfection capacity.
    del Pozo-Rodríguez A; Delgado D; Solinís MA; Gascón AR; Pedraz JL
    Int J Pharm; 2007 Jul; 339(1-2):261-8. PubMed ID: 17467205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient cationic hydroxyethylated cholesterol-based nanoparticle-mediated gene transfer in vivo and in vitro in prostate carcinoma PC-3 cells.
    Hattori Y; Ding WX; Maitani Y
    J Control Release; 2007 Jul; 120(1-2):122-30. PubMed ID: 17512626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternization enhances the transgene expression efficacy of aminoglycoside-derived polymers.
    Miryala B; Feng Y; Omer A; Potta T; Rege K
    Int J Pharm; 2015 Jul; 489(1-2):18-29. PubMed ID: 25888800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles.
    Vighi E; Ruozi B; Montanari M; Battini R; Leo E
    Int J Pharm; 2010 Apr; 389(1-2):254-61. PubMed ID: 20100555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. alpha,beta-poly(asparthylhydrazide)-glycidyltrimethylammonium chloride copolymers (PAHy-GTA): novel polymers with potential for DNA delivery.
    Pedone E; Cavallaro G; Richardson SC; Duncan R; Giammona G
    J Control Release; 2001 Nov; 77(1-2):139-53. PubMed ID: 11689267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable pDNA/DODAB:MO lipoplexes: the effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency.
    Silva JP; Oliveira AC; Lúcio M; Gomes AC; Coutinho PJ; Oliveira ME
    Colloids Surf B Biointerfaces; 2014 Sep; 121():371-9. PubMed ID: 25023903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.
    Sevimli S; Sagnella S; Kavallaris M; Bulmus V; Davis TP
    Biomacromolecules; 2013 Nov; 14(11):4135-49. PubMed ID: 24125032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection.
    Xu Y; Szoka FC
    Biochemistry; 1996 May; 35(18):5616-23. PubMed ID: 8639519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphoteric hyaluronic acid derivative for targeting gene delivery.
    Yao J; Fan Y; Du R; Zhou J; Lu Y; Wang W; Ren J; Sun X
    Biomaterials; 2010 Dec; 31(35):9357-65. PubMed ID: 20864163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection.
    Namvar A; Bolhassani A; Khairkhah N; Motevalli F
    Biopolymers; 2015 Jul; 103(7):363-75. PubMed ID: 25761628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.