These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20080240)

  • 1. On the assumption of steadiness of nasal cavity flow.
    Hörschler I; Schröder W; Meinke M
    J Biomech; 2010 Apr; 43(6):1081-5. PubMed ID: 20080240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of nasal flow by lattice Boltzmann methods.
    Finck M; Hänel D; Wlokas I
    Comput Biol Med; 2007 Jun; 37(6):739-49. PubMed ID: 16962572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle image velocimetry measurements for the study of nasal airflow.
    Kim JK; Yoon JH; Kim CH; Nam TW; Shim DB; Shin HA
    Acta Otolaryngol; 2006 Mar; 126(3):282-7. PubMed ID: 16618655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations for detailed airflow dynamics in a human nasal cavity.
    Wen J; Inthavong K; Tu J; Wang S
    Respir Physiol Neurobiol; 2008 Apr; 161(2):125-35. PubMed ID: 18378196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of nasal structure on the distribution of airflow in nasal cavity.
    Yu S; Liu Y; Sun X; Li S
    Rhinology; 2008 Jun; 46(2):137-43. PubMed ID: 18575016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity.
    Yang GC; Scherer PW; Mozell MM
    Chem Senses; 2007 Mar; 32(3):215-23. PubMed ID: 17220519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry.
    Croce C; Fodil R; Durand M; Sbirlea-Apiou G; Caillibotte G; Papon JF; Blondeau JR; Coste A; Isabey D; Louis B
    Ann Biomed Eng; 2006 Jun; 34(6):997-1007. PubMed ID: 16783655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A comparative study on numerical simulation of the normal nasal airflow during periodic breathing and steady-state breathing].
    Xiong GX; Li JF; Zhuang HW; Zhou XH; Zhan JM; Xu G
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2010 Sep; 45(9):737-41. PubMed ID: 21092671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of turbulent airflow using a CT based upper airway model of a racehorse.
    Rakesh V; Datta AK; Ducharme NG; Pease AP
    J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A numerical simulation of the aerodynamics of the nasal cavity].
    Chometon F; Ebbo D; Gillieron P; Koïfman P; Lecomte F; Sorrel-Dejerine N
    Ann Otolaryngol Chir Cervicofac; 2000 Mar; 117(2):98-104. PubMed ID: 10739999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsteady flow characteristics through a human nasal airway.
    Lee JH; Na Y; Kim SK; Chung SK
    Respir Physiol Neurobiol; 2010 Jul; 172(3):136-46. PubMed ID: 20471501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nasal airflow during respiratory cycle.
    Chung SK; Son YR; Shin SJ; Kim SK
    Am J Rhinol; 2006; 20(4):379-84. PubMed ID: 16955764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic characteristics of heat capacity of the human nasal cavity during a respiratory cycle.
    Chung SK; Na Y
    Respir Physiol Neurobiol; 2021 Aug; 290():103674. PubMed ID: 33894344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow.
    Xu C; Sin S; McDonough JM; Udupa JK; Guez A; Arens R; Wootton DM
    J Biomech; 2006; 39(11):2043-54. PubMed ID: 16098533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of removing turbinate on the airflow distribution in nasal cavity].
    Liu Y; Yu S; Sun X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1315-8. PubMed ID: 19166200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Three dimensional reconstruction of the nasal cavity structure and numerical simulation of airflow].
    Sun X; Yu S; Liu Y; Zheng Z; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1162-5. PubMed ID: 17228700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the three-dimensional flow in a human lung model.
    Freitas RK; Schröder W
    J Biomech; 2008 Aug; 41(11):2446-57. PubMed ID: 18614172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow.
    Craven BA; Paterson EG; Settles GS; Lawson MJ
    J Biomech Eng; 2009 Sep; 131(9):091002. PubMed ID: 19725691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snoring source identification and snoring noise prediction.
    Liu ZS; Luo XY; Lee HP; Lu C
    J Biomech; 2007; 40(4):861-70. PubMed ID: 16737702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.