These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 20080327)
1. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition. Ruttens A; Adriaensen K; Meers E; De Vocht A; Geebelen W; Carleer R; Mench M; Vangronsveld J Environ Pollut; 2010 May; 158(5):1428-34. PubMed ID: 20080327 [TBL] [Abstract][Full Text] [Related]
2. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. Guo F; Ding C; Zhou Z; Huang G; Wang X Ecotoxicol Environ Saf; 2018 Oct; 161():164-172. PubMed ID: 29879577 [TBL] [Abstract][Full Text] [Related]
3. Leaching characteristics of residual lateritic soils stabilised with fly ash and lime for geotechnical applications. Goswami RK; Mahanta C Waste Manag; 2007; 27(4):466-81. PubMed ID: 17118641 [TBL] [Abstract][Full Text] [Related]
4. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308 [TBL] [Abstract][Full Text] [Related]
5. Use of composts in the remediation of heavy metal contaminated soil. Farrell M; Jones DL J Hazard Mater; 2010 Mar; 175(1-3):575-82. PubMed ID: 19910114 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of amendments on re-acidification and heavy metal immobilization in an extremely acidic mine soil. Yang SX; Li JT; Yang B; Liao B; Zhang JT; Shu WS J Environ Monit; 2011 Jul; 13(7):1876-83. PubMed ID: 21607275 [TBL] [Abstract][Full Text] [Related]
7. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil. Rodríguez-Jordá MP; Garrido F; García-González MT J Hazard Mater; 2010 Mar; 175(1-3):762-9. PubMed ID: 19932561 [TBL] [Abstract][Full Text] [Related]
8. Availability and vertical distribution of Cu, Cd, Ca, and P in soil as influenced by lime and apatite with different dosages: a 7-year field study. Cui H; Zhang W; Zhou J; Xu L; Zhang X; Zhang S; Zhou J Environ Sci Pollut Res Int; 2018 Dec; 25(35):35143-35153. PubMed ID: 30328042 [TBL] [Abstract][Full Text] [Related]
9. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Grumiaux F; Demuynck S; Schikorski D; Lemière S; Leprêtre A Chemosphere; 2010 Mar; 79(2):156-61. PubMed ID: 20129643 [TBL] [Abstract][Full Text] [Related]
10. Hydrated lime for metals immobilization and explosives transformation: Treatability study. Martin WA; Larson SL; Nestler CC; Fabian G; O'Connor G; Felt DR J Hazard Mater; 2012 May; 215-216():280-6. PubMed ID: 22445717 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Bose S; Bhattacharyya AK Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356 [TBL] [Abstract][Full Text] [Related]
12. Lime and compost promote plant re-colonization of metal-polluted, acidic soils. Ulriksen C; Ginocchio R; Mench M; Neaman A Int J Phytoremediation; 2012 Sep; 14(8):820-33. PubMed ID: 22908647 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium). Geebelen W; Sappin-Didier V; Ruttens A; Carleer R; Yperman J; Bongué-Boma K; Mench M; van der Lelie N; Vangronsveld J Environ Pollut; 2006 Nov; 144(1):32-9. PubMed ID: 16507330 [TBL] [Abstract][Full Text] [Related]
14. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Hartley W; Edwards R; Lepp NW Environ Pollut; 2004 Oct; 131(3):495-504. PubMed ID: 15261413 [TBL] [Abstract][Full Text] [Related]
15. Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study. Brown S; Svendsen A; Henry C J Environ Qual; 2009; 38(6):2189-97. PubMed ID: 19875774 [TBL] [Abstract][Full Text] [Related]
16. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Ruttens A; Mench M; Colpaert JV; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):524-32. PubMed ID: 16542762 [TBL] [Abstract][Full Text] [Related]
17. Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study. Madejón E; Madejón P; Burgos P; Pérez de Mora A; Cabrera F J Hazard Mater; 2009 Mar; 162(2-3):931-8. PubMed ID: 18602216 [TBL] [Abstract][Full Text] [Related]
18. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
19. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture. Mallampati SR; Mitoma Y; Okuda T; Sakita S; Kakeda M Chemosphere; 2012 Oct; 89(6):717-23. PubMed ID: 22818089 [TBL] [Abstract][Full Text] [Related]
20. Speciation of heavy metals during co-composting of sewage sludge with lime. Wong JW; Selvam A Chemosphere; 2006 May; 63(6):980-6. PubMed ID: 16288801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]