BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20080507)

  • 1. Active site prediction using evolutionary and structural information.
    Sankararaman S; Sha F; Kirsch JF; Jordan MI; Sjölander K
    Bioinformatics; 2010 Mar; 26(5):617-24. PubMed ID: 20080507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INTREPID--INformation-theoretic TREe traversal for Protein functional site IDentification.
    Sankararaman S; Sjölander K
    Bioinformatics; 2008 Nov; 24(21):2445-52. PubMed ID: 18776193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties.
    Petrova NV; Wu CH
    BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction.
    Teppa E; Wilkins AD; Nielsen M; Buslje CM
    BMC Bioinformatics; 2012 Sep; 13():235. PubMed ID: 22978315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural descriptor database: a new tool for sequence-based functional site prediction.
    Bernardes JS; Fernandez JH; Vasconcelos AT
    BMC Bioinformatics; 2008 Nov; 9():492. PubMed ID: 19032768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic prediction of catalytic residues by modeling residue structural neighborhood.
    Cilia E; Passerini A
    BMC Bioinformatics; 2010 Mar; 11():115. PubMed ID: 20199672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction.
    Bryant DH; Moll M; Chen BY; Fofanov VY; Kavraki LE
    BMC Bioinformatics; 2010 May; 11():242. PubMed ID: 20459833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EXIA2: web server of accurate and rapid protein catalytic residue prediction.
    Lu CH; Yu CS; Chien YT; Huang SW
    Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIER: protein interface recognition for structural proteomics.
    Kufareva I; Budagyan L; Raush E; Totrov M; Abagyan R
    Proteins; 2007 May; 67(2):400-17. PubMed ID: 17299750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of features for catalytic residue prediction in novel folds.
    Youn E; Peters B; Radivojac P; Mooney SD
    Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. INTREPID: a web server for prediction of functionally important residues by evolutionary analysis.
    Sankararaman S; Kolaczkowski B; Sjölander K
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W390-5. PubMed ID: 19443452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective prediction of interaction sites in protein structures with THEMATICS.
    Wei Y; Ko J; Murga LF; Ondrechen MJ
    BMC Bioinformatics; 2007 Apr; 8():119. PubMed ID: 17419878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.
    Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI
    J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of protein catalytic residues at high precision using local network properties.
    Slama P; Filippis I; Lappe M
    BMC Bioinformatics; 2008 Dec; 9():517. PubMed ID: 19055796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.