These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Nonreciprocal optomechanically induced transparency and enhanced ground-state cooling in a reversed-dissipation cavity system. Zhang J; Li Y; Zhang Y Opt Express; 2024 Jan; 32(1):499-510. PubMed ID: 38175078 [TBL] [Abstract][Full Text] [Related]
23. Tunable microwave-optical entanglement and conversion in multimode electro-opto-mechanics. Wei T; Wu D; Miao Q; Yang C; Luo J Opt Express; 2022 Mar; 30(6):10135-10151. PubMed ID: 35299424 [TBL] [Abstract][Full Text] [Related]
24. Cooling Mechanical Oscillators by Coherent Control. Frimmer M; Gieseler J; Novotny L Phys Rev Lett; 2016 Oct; 117(16):163601. PubMed ID: 27792359 [TBL] [Abstract][Full Text] [Related]
25. Quantum control of a nanoparticle optically levitated in cryogenic free space. Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214 [TBL] [Abstract][Full Text] [Related]
27. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. Conangla GP; Schell AW; Rica RA; Quidant R Nano Lett; 2018 Jun; 18(6):3956-3961. PubMed ID: 29772171 [TBL] [Abstract][Full Text] [Related]
28. Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. Tebbenjohanns F; Frimmer M; Militaru A; Jain V; Novotny L Phys Rev Lett; 2019 Jun; 122(22):223601. PubMed ID: 31283294 [TBL] [Abstract][Full Text] [Related]
31. Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath. Xu X; Purdy T; Taylor JM Phys Rev Lett; 2017 Jun; 118(22):223602. PubMed ID: 28621997 [TBL] [Abstract][Full Text] [Related]
32. Tunable phonon-cavity coupling in graphene membranes. De Alba R; Massel F; Storch IR; Abhilash TS; Hui A; McEuen PL; Craighead HG; Parpia JM Nat Nanotechnol; 2016 Sep; 11(9):741-6. PubMed ID: 27294504 [TBL] [Abstract][Full Text] [Related]
33. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Jöckel A; Faber A; Kampschulte T; Korppi M; Rakher MT; Treutlein P Nat Nanotechnol; 2015 Jan; 10(1):55-9. PubMed ID: 25420032 [TBL] [Abstract][Full Text] [Related]
34. Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity. Liu ZQ; Liu L; Meng ZZ; Tan L; Liu WM Opt Express; 2024 Jan; 32(1):722-741. PubMed ID: 38175094 [TBL] [Abstract][Full Text] [Related]
35. Laser cooling of a nanomechanical oscillator into its quantum ground state. Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049 [TBL] [Abstract][Full Text] [Related]
36. Spin-cooling of the motion of a trapped diamond. Delord T; Huillery P; Nicolas L; Hétet G Nature; 2020 Apr; 580(7801):56-59. PubMed ID: 32238930 [TBL] [Abstract][Full Text] [Related]
37. High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems. Di K; Tan S; Wang L; Cheng A; Wang X; Liu Y; Du J Opt Express; 2023 Aug; 31(18):29491-29503. PubMed ID: 37710748 [TBL] [Abstract][Full Text] [Related]