These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20080601)

  • 1. CFTR: break a pump, make a channel.
    Miller C
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):959-60. PubMed ID: 20080601
    [No Abstract]   [Full Text] [Related]  

  • 2. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP hydrolysis-coupled gating of CFTR chloride channels: structure and function.
    Zou X; Hwang TC
    Biochemistry; 2001 May; 40(19):5579-86. PubMed ID: 11341822
    [No Abstract]   [Full Text] [Related]  

  • 4. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.
    Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA
    J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN
    J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR.
    Bear CE; Li C; Galley K; Wang Y; Garami E; Ramjeesingh M
    J Bioenerg Biomembr; 1997 Oct; 29(5):465-73. PubMed ID: 9511931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects.
    Wang F; Zeltwanger S; Yang IC; Nairn AC; Hwang TC
    J Gen Physiol; 1998 Mar; 111(3):477-90. PubMed ID: 9482713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conditional probability analysis of cystic fibrosis transmembrane conductance regulator gating indicates that ATP has multiple effects during the gating cycle.
    Hennager DJ; Ikuma M; Hoshi T; Welsh MJ
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3594-9. PubMed ID: 11248123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two halves of CFTR form a dual-pore ion channel.
    Yue H; Devidas S; Guggino WB
    J Biol Chem; 2000 Apr; 275(14):10030-4. PubMed ID: 10744680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator gating requires cytosolic electrolytes.
    Wu JV; Joo NS; Krouse ME; Wine JJ
    J Biol Chem; 2001 Mar; 276(9):6473-8. PubMed ID: 11112782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox reagents and divalent cations alter the kinetics of cystic fibrosis transmembrane conductance regulator channel gating.
    Harrington MA; Gunderson KL; Kopito RR
    J Biol Chem; 1999 Sep; 274(39):27536-44. PubMed ID: 10488089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator.
    Ismailov II; Awayda MS; Jovov B; Berdiev BK; Fuller CM; Dedman JR; Kaetzel M; Benos DJ
    J Biol Chem; 1996 Mar; 271(9):4725-32. PubMed ID: 8617738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator.
    Infield DT; Cui G; Kuang C; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent modulation of CFTR gating by pyrophosphate.
    Tsai MF; Shimizu H; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2009 Apr; 133(4):405-19. PubMed ID: 19332621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.
    Miki H; Zhou Z; Li M; Hwang TC; Bompadre SG
    J Biol Chem; 2010 Jun; 285(26):19967-75. PubMed ID: 20406820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.