These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Tapley TL; Körner JL; Barge MT; Hupfeld J; Schauerte JA; Gafni A; Jakob U; Bardwell JC Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5557-62. PubMed ID: 19321422 [TBL] [Abstract][Full Text] [Related]
6. Characterizations of the Interactions between Escherichia coli Periplasmic Chaperone HdeA and Its Native Substrates during Acid Stress. Yu XC; Yang C; Ding J; Niu X; Hu Y; Jin C Biochemistry; 2017 Oct; 56(43):5748-5757. PubMed ID: 29016106 [TBL] [Abstract][Full Text] [Related]
7. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. Malki A; Le HT; Milles S; Kern R; Caldas T; Abdallah J; Richarme G J Biol Chem; 2008 May; 283(20):13679-87. PubMed ID: 18359765 [TBL] [Abstract][Full Text] [Related]
8. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation. Garrison MA; Crowhurst KA Protein Sci; 2014 Feb; 23(2):167-78. PubMed ID: 24375557 [TBL] [Abstract][Full Text] [Related]
9. Multiscale modeling of a conditionally disordered pH-sensing chaperone. Ahlstrom LS; Law SM; Dickson A; Brooks CL J Mol Biol; 2015 Apr; 427(8):1670-80. PubMed ID: 25584862 [TBL] [Abstract][Full Text] [Related]
10. Chaperone activation by unfolding. Foit L; George JS; Zhang BW; Brooks CL; Bardwell JC Proc Natl Acad Sci U S A; 2013 Apr; 110(14):E1254-62. PubMed ID: 23487787 [TBL] [Abstract][Full Text] [Related]
11. Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Stull F; Koldewey P; Humes JR; Radford SE; Bardwell JCA Nat Struct Mol Biol; 2016 Jan; 23(1):53-58. PubMed ID: 26619265 [TBL] [Abstract][Full Text] [Related]
12. Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH. Widjaja MA; Gomez JS; Benson JM; Crowhurst KA Biochim Biophys Acta Proteins Proteom; 2021 Feb; 1869(2):140576. PubMed ID: 33253897 [TBL] [Abstract][Full Text] [Related]
13. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Zhang M; Lin S; Song X; Liu J; Fu Y; Ge X; Fu X; Chang Z; Chen PR Nat Chem Biol; 2011 Sep; 7(10):671-7. PubMed ID: 21892184 [TBL] [Abstract][Full Text] [Related]
14. Acid-denatured small heat shock protein HdeA from Miyawaki S; Uemura Y; Hongo K; Kawata Y; Mizobata T J Biol Chem; 2019 Feb; 294(5):1590-1601. PubMed ID: 30530490 [TBL] [Abstract][Full Text] [Related]
15. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. Hong W; Jiao W; Hu J; Zhang J; Liu C; Fu X; Shen D; Xia B; Chang Z J Biol Chem; 2005 Jul; 280(29):27029-34. PubMed ID: 15911614 [TBL] [Abstract][Full Text] [Related]
16. Anti-chaperone behavior of BiP during the protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme. Puig A; Gilbert HF J Biol Chem; 1994 Oct; 269(41):25889-96. PubMed ID: 7929293 [TBL] [Abstract][Full Text] [Related]
17. Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria. Wu YE; Hong W; Liu C; Zhang L; Chang Z Biochem J; 2008 Jun; 412(2):389-97. PubMed ID: 18271752 [TBL] [Abstract][Full Text] [Related]
18. The complex role of the N-terminus and acidic residues of HdeA as pH-dependent switches in its chaperone function. Pacheco S; Widjaja MA; Gomez JS; Crowhurst KA; Abrol R Biophys Chem; 2020 Sep; 264():106406. PubMed ID: 32593908 [TBL] [Abstract][Full Text] [Related]
19. Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers. Zhang S; He D; Lin Z; Yang Y; Song H; Chen PR Acc Chem Res; 2017 May; 50(5):1184-1192. PubMed ID: 28467057 [TBL] [Abstract][Full Text] [Related]
20. [Thermostability and Refolding of Proteins in Bacteria Is Determined by the Activity of Two Different ATP-Dependent Chaperone Groups]. Zavilgelsky GB; Gnuchikh EY; Melkina OE Mol Biol (Mosk); 2020; 54(2):300-307. PubMed ID: 32392200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]