BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20080675)

  • 1. Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection.
    Chen F; Gaucher EA; Leal NA; Hutter D; Havemann SA; Govindarajan S; Ortlund EA; Benner SA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1948-53. PubMed ID: 20080675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases.
    Gardner AF; Jack WE
    Nucleic Acids Res; 2002 Jan; 30(2):605-13. PubMed ID: 11788725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity.
    Patel PH; Kawate H; Adman E; Ashbach M; Loeb LA
    J Biol Chem; 2001 Feb; 276(7):5044-51. PubMed ID: 11069916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A longer finger-subdomain of family A DNA polymerases found by metagenomic analysis strengthens DNA binding and primer extension abilities.
    Yamagami T; Matsukawa H; Tsunekawa S; Kawarabayasi Y; Ishino S; Ishino Y
    Gene; 2016 Feb; 576(2 Pt 1):690-5. PubMed ID: 26476294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators.
    Brandis JW; Edwards SG; Johnson KA
    Biochemistry; 1996 Feb; 35(7):2189-200. PubMed ID: 8652560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation.
    Li Y; Mitaxov V; Waksman G
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9491-6. PubMed ID: 10449720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns.
    Parker LT; Zakeri H; Deng Q; Spurgeon S; Kwok PY; Nickerson DA
    Biotechniques; 1996 Oct; 21(4):694-9. PubMed ID: 8891223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple amino acid substitutions allow DNA polymerases to synthesize RNA.
    Patel PH; Loeb LA
    J Biol Chem; 2000 Dec; 275(51):40266-72. PubMed ID: 11005812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase.
    Xia G; Chen L; Sera T; Fa M; Schultz PG; Romesberg FE
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6597-602. PubMed ID: 12011423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution.
    Ghadessy FJ; Ramsay N; Boudsocq F; Loakes D; Brown A; Iwai S; Vaisman A; Woodgate R; Holliger P
    Nat Biotechnol; 2004 Jun; 22(6):755-9. PubMed ID: 15156154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.
    Laos R; Shaw R; Leal NA; Gaucher E; Benner S
    Biochemistry; 2013 Aug; 52(31):5288-94. PubMed ID: 23815560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic editing properties of DNA polymerases.
    Canard B; Cardona B; Sarfati RS
    Proc Natl Acad Sci U S A; 1995 Nov; 92(24):10859-63. PubMed ID: 7479898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated system for DNA sequencing by synthesis using novel nucleotide analogues.
    Guo J; Yu L; Turro NJ; Ju J
    Acc Chem Res; 2010 Apr; 43(4):551-63. PubMed ID: 20121268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and application of charge-modified dye-labeled dideoxynucleoside-5'-triphosphates to 'direct-load' DNA sequencing.
    Finn PJ; Sun L; Nampalli S; Xiao H; Nelson JR; Mamone JA; Grossmann G; Flick PK; Fuller CW; Kumar S
    Nucleic Acids Res; 2002 Jul; 30(13):2877-85. PubMed ID: 12087172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
    Zhao G; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA sequencing using differential extension with nucleotide subsets (DENS).
    Raja MC; Zevin-Sonkin D; Shwartzburd J; Rozovskaya TA; Sobolev IA; Chertkov O; Ramanathan V; Lvovsky L; Ulanovsky LE
    Nucleic Acids Res; 1997 Feb; 25(4):800-5. PubMed ID: 9016632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed DNA polymerase evolution: effects of mutations in motif C on the mismatch-extension selectivity of thermus aquaticus DNA polymerase.
    Strerath M; Gloeckner C; Liu D; Schnur A; Marx A
    Chembiochem; 2007 Mar; 8(4):395-401. PubMed ID: 17279590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and high fidelity incorporation of dye-terminators by a novel archaeal DNA polymerase mutant.
    Arezi B; Hansen CJ; Hogrefe HH
    J Mol Biol; 2002 Sep; 322(4):719-29. PubMed ID: 12270709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase.
    Obeid S; Baccaro A; Welte W; Diederichs K; Marx A
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21327-31. PubMed ID: 21123743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O-helix mutant T664P of Thermus aquaticus DNA polymerase I: altered catalytic properties for incorporation of incorrect nucleotides but not correct nucleotides.
    Tosaka A; Ogawa M; Yoshida S; Suzuki M
    J Biol Chem; 2001 Jul; 276(29):27562-7. PubMed ID: 11346641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.