These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20081003)

  • 1. Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures.
    Lin HL; Lin CC; Lin YJ; Lin HC; Shih CM; Chen CR; Huang RN; Kuo TC
    Appl Environ Microbiol; 2010 Mar; 76(5):1683-5. PubMed ID: 20081003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of the number of pathogens in bacterial suspensions using laser nephelometry in comparison to the photometry and plate counting method].
    Sonak R; Thoholte H
    Zentralbl Bakteriol Mikrobiol Hyg A; 1985 Nov; 260(3):329-38. PubMed ID: 3937375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General calibration of microbial growth in microplate readers.
    Stevenson K; McVey AF; Clark IBN; Swain PS; Pilizota T
    Sci Rep; 2016 Dec; 6():38828. PubMed ID: 27958314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental factors influencing the relationship between optical density and cell count for Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Cools I; Van Impe JF; Debevere J
    J Appl Microbiol; 2005; 99(6):1503-15. PubMed ID: 16313423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus.
    Biesta-Peters EG; Reij MW; Joosten H; Gorris LG; Zwietering MH
    Appl Environ Microbiol; 2010 Mar; 76(5):1399-405. PubMed ID: 20081006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications.
    Meyers A; Furtmann C; Jose J
    Enzyme Microb Technol; 2018 Nov; 118():1-5. PubMed ID: 30143192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nephelometric method of determining the hemolytic activity of microorganisms].
    SologubVV ; Rozhavin MA
    Lab Delo; 1987; (12):937-9. PubMed ID: 2449582
    [No Abstract]   [Full Text] [Related]  

  • 8. The 'Erlenmeter': a low-cost, open-source turbidimeter for no-sampling phenotyping of microorganism growth.
    Serôdio J; Bastos A; Frankenbach S; Frommlet JC; Esteves AC; Queiroga H
    PeerJ; 2024; 12():e17659. PubMed ID: 39006034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical notes on the correct configuration of the Alfred 60/AST device for the detection of urinary tract infections.
    Spezzotti G
    J Clin Microbiol; 2014 May; 52(5):1805-6. PubMed ID: 24744406
    [No Abstract]   [Full Text] [Related]  

  • 10. Reply to "Technical notes on the correct configuration of the Alfred 60/AST device for the detection of urinary tract infections".
    Lahanas S; Stathopoulos G; Chan R; van Hal SJ
    J Clin Microbiol; 2014 May; 52(5):1807. PubMed ID: 24744407
    [No Abstract]   [Full Text] [Related]  

  • 11. Multichannel bacterial growth analyser by impedance and turbidity.
    Madrid RE; Vercellone MI; Felice CJ; Valentinuzzi ME
    Med Biol Eng Comput; 1994 Nov; 32(6):670-2. PubMed ID: 7723428
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of an on-line turbidimeter for the automation of fed-batch cultures.
    Yamane T
    Biotechnol Prog; 1993; 9(1):81-5. PubMed ID: 7763414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of turbidity spectra for the purpose of determining the cell division cycles and degree of synchronization of cultures].
    Dmitrieva TS; Mitina VS; Klenin VI
    Zh Mikrobiol Epidemiol Immunobiol; 1974; 00(5):84-7. PubMed ID: 4616592
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluation of the Alfred 60/AST device as a screening test for urinary tract infections.
    Lahanas S; Stathopoulos G; Chan RC; van Hal SJ
    J Clin Microbiol; 2013 Oct; 51(10):3406-8. PubMed ID: 23885005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semielectronic turbidimeter for automated monitoring of bacterial growth in test tubes.
    Marcelis JH; Versteeg H; Beck HJ; Vinke D
    Appl Environ Microbiol; 1980 Feb; 39(2):281-4. PubMed ID: 6990863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis.
    Merzlyak MN; Naqvi KR
    J Photochem Photobiol B; 2000 Nov; 58(2-3):123-9. PubMed ID: 11233639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special aspects of laboratory investigations with mecillinam.
    Tybring L
    J Antimicrob Chemother; 1977 Jul; 3 Suppl B():23-7. PubMed ID: 330484
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative analysis of MazEF and HicAB toxin-antitoxin systems of the cyanobacterium, Anabaena sp. PCC7120.
    Potnis AA; Raghavan PS; Shelke A; Nikam TD; Rajaram H
    FEMS Microbiol Lett; 2017 Jan; 364(1):. PubMed ID: 27940461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled Turbidity and Spectroscopy Problems: A Simple Algorithm for Volumetric Analysis of Optically Thin or Dilute, In Vitro Bacterial Cultures in Various Media.
    Ortiz S; McDonough RT; Dent P; Goodisman J; Chaiken J
    Appl Spectrosc; 2020 Mar; 74(3):261-274. PubMed ID: 31397583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect on growth curves and killing curves of brief exposure of Escherichia coli to imipenem and piperacillin.
    Yourassowsky E; Van der Linden MP; Lismont MJ; Crokaert F; Glupczynski Y
    J Antimicrob Chemother; 1986 Dec; 18 Suppl E():61-5. PubMed ID: 3546248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.