These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2008171)

  • 1. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner.
    Rosenow UF; Islam MK; Gaballa H; Rashid H
    Med Phys; 1991; 18(1):19-25. PubMed ID: 2008171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron energy constancy check using a five-chamber detector array.
    Ho AK; deSouza CN; Sibata CH; Shin KH
    Med Dosim; 1994; 19(4):259-60. PubMed ID: 7893360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality assurance of electron and photon beam energy using the BQ-CHECK phantom.
    Speight RJ; Esmail A; Weston SJ
    J Appl Clin Med Phys; 2011 Feb; 12(2):3366. PubMed ID: 21587183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of electron beam energy variations using a computed radiography system.
    Cai YC; Ge Y; Bernard D; Turian J; Chu JCH
    J Appl Clin Med Phys; 2009 Oct; 10(4):142-150. PubMed ID: 19918220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical implementation of photon beam flatness measurements to verify beam quality.
    Goodall S; Harding N; Simpson J; Alexander L; Morgan S
    J Appl Clin Med Phys; 2015 Nov; 16(6):340-345. PubMed ID: 26699589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies. Part 1: the NACP chamber.
    Cross P; Freeman N
    Australas Phys Eng Sci Med; 1996 Sep; 19(3):197-200. PubMed ID: 8936730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method of producing depth ionization data for electron energy constancy check.
    Islam MK; Rashid H; Gaballa H; Ting J; Rosenow UF
    Med Phys; 1993; 20(1):187-91. PubMed ID: 8455498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scintillating fiber beam-energy monitor for electron beam therapy.
    Aoyama T; Maekoshi H; Tsuzaka M; Koyama S
    Med Phys; 1995 Dec; 22(12):2101-2. PubMed ID: 8746717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric implications of shifts in linear accelerator electron beam energy detected in routine constancy checks: a scanning film densitometry detection method.
    Cross P; Wang Y
    Australas Phys Eng Sci Med; 1993 Dec; 16(4):186-90. PubMed ID: 8122991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a diode detector array for use as a linear accelerator QC device.
    Watts RJ
    Med Phys; 1998 Feb; 25(2):247-50. PubMed ID: 9507488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.
    Rodrigues A; Sawkey D; Yin FF; Wu Q
    Med Phys; 2015 May; 42(5):2389-403. PubMed ID: 25979034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of the response of an a-Si EPID to an unflattened photon beam from an Elekta Precise linear accelerator.
    Tyner E; McClean B; McCavana P; af Wetterstedt S
    Med Phys; 2009 Apr; 36(4):1318-29. PubMed ID: 19472639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of electron beams from a medical microtron.
    George RE; Frost SV; Hartson-Eaton M
    Med Phys; 1986; 13(4):533-8. PubMed ID: 3090411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of ionisation in water, polystyrene and a 'solid water' phantom material for electron beams.
    Thwaites DI
    Phys Med Biol; 1985 Jan; 30(1):41-53. PubMed ID: 3975275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using ion chambers with wedge-shaped absorbers for electron energy measurements.
    Johnsen SW
    Med Phys; 1986; 13(2):257-8. PubMed ID: 3702824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams.
    Liu L; Prasad SC; Bassano DA
    Med Dosim; 2003; 28(4):267-9. PubMed ID: 14684192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of electron beam dose measurements in water and polystyrene using various dosimeters.
    Kase KR; Adler GJ; Bjärngard BE
    Med Phys; 1982; 9(1):13-9. PubMed ID: 6804767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to relate StarTrack(®) measurements to R50 variations in clinical linacs.
    de la Vega JM; Ruiz-Arrebola S; Tornero-López AM; Vilches M; Guerrero R; Guirado D; Lallena AM
    Phys Med; 2014 Nov; 30(7):827-32. PubMed ID: 24735905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.
    Huang Y; Willomitzer C; Zakaria GA; Hartmann GH
    Phys Med; 2010; 26(3):126-31. PubMed ID: 19926506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.