BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20082071)

  • 1. Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria: toxicity and modulation of cadmium bioavailability.
    Bondarenko O; Rahman PK; Rahman TJ; Kahru A; Ivask A
    Microb Ecol; 2010 Apr; 59(3):588-600. PubMed ID: 20082071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited Role of Rhamnolipids on Cadmium Resistance for an Endogenous-Secretion Bacterium.
    Xing S; Yan Z; Song C; Tian H; Wang S
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36231857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.
    Lin X; Mou R; Cao Z; Xu P; Wu X; Zhu Z; Chen M
    Sci Total Environ; 2016 Nov; 569-570():97-104. PubMed ID: 27341110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.
    Sodagari M; Wang H; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens.
    Li Y; Sanfilippo JE; Kearns D; Yang JQ
    Microbiol Spectr; 2022 Oct; 10(5):e0323322. PubMed ID: 36214703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.
    Ndeddy Aka RJ; Babalola OO
    Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri.
    Kurvet I; Ivask A; Bondarenko O; Sihtmäe M; Kahru A
    Sensors (Basel); 2011; 11(8):7865-78. PubMed ID: 22164050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.
    Leite GG; Figueirôa JV; Almeida TC; Valões JL; Marques WF; Duarte MD; Gorlach-Lira K
    Biotechnol Prog; 2016 Mar; 32(2):262-70. PubMed ID: 26588432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption.
    Wu J; Zhang J; Wang P; Zhu L; Gao M; Zheng Z; Zhan X
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1611-1619. PubMed ID: 28803337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium- and lead-contaminated soil.
    Nath S; Deb B; Sharma I
    Int Microbiol; 2018 Jun; 21(1-2):35-45. PubMed ID: 30810918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing.
    Ivask A; Rõlova T; Kahru A
    BMC Biotechnol; 2009 May; 9():41. PubMed ID: 19426479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effect of Rhamnolipids and Inoculation on the Bioremediation of Petroleum-Contaminated Soils by Bacterial Consortia.
    Xue SW; Huang C; Tian YX; Li YB; Li J; Ma YL
    Curr Microbiol; 2020 Jun; 77(6):997-1005. PubMed ID: 32002627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
    De Rienzo MA; Martin PJ
    Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B.
    Cui CZ; Zeng C; Wan X; Chen D; Zhang JY; Shen P
    J Microbiol Biotechnol; 2008 Jan; 18(1):63-6. PubMed ID: 18239418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.).
    Afzal S; Begum N; Zhao H; Fang Z; Lou L; Cai Q
    J Appl Microbiol; 2017 Aug; 123(2):498-510. PubMed ID: 28581636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection.
    Chebbi A; Elshikh M; Haque F; Ahmed S; Dobbin S; Marchant R; Sayadi S; Chamkha M; Banat IM
    J Basic Microbiol; 2017 May; 57(5):364-375. PubMed ID: 28156000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages.
    McClure CD; Schiller NL
    J Leukoc Biol; 1992 Feb; 51(2):97-102. PubMed ID: 1431557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli.
    Du J; Zhang A; Hao J; Wang J
    Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.