These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20082092)

  • 21. Effect of repeated caffeine ingestion on repeated exhaustive exercise endurance.
    Bell DG; McLellan TM
    Med Sci Sports Exerc; 2003 Aug; 35(8):1348-54. PubMed ID: 12900689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Caffeine Improved Time to Exhaustion But Did Not Change Alternative Maximal Accumulated Oxygen Deficit Estimated During a Single Supramaximal Running Bout.
    Poli RA; Miyagi WE; Nakamura FY; Zagatto AM
    Int J Sport Nutr Exerc Metab; 2016 Dec; 26(6):549-557. PubMed ID: 27096623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic and exercise endurance effects of coffee and caffeine ingestion.
    Graham TE; Hibbert E; Sathasivam P
    J Appl Physiol (1985); 1998 Sep; 85(3):883-9. PubMed ID: 9729561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Caffeine on Sprint Cycling in Experienced Cyclists.
    Anderson DE; LeGrand SE; McCart RD
    J Strength Cond Res; 2018 Aug; 32(8):2221-2226. PubMed ID: 29912858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion.
    Ryan EJ; Kim CH; Muller MD; Bellar DM; Barkley JE; Bliss MV; Jankowski-Wilkinson A; Russell M; Otterstetter R; Macander D; Glickman EL; Kamimori GH
    J Strength Cond Res; 2012 Mar; 26(3):844-50. PubMed ID: 22293680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial.
    Wiles JD; Coleman D; Tegerdine M; Swaine IL
    J Sports Sci; 2006 Nov; 24(11):1165-71. PubMed ID: 17035165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeine influences cadence at lower but not higher intensity RPE-regulated cycling.
    Green JM; Olenick A; Eastep C; Winchester L
    Physiol Behav; 2017 Feb; 169():46-51. PubMed ID: 27851893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Caffeine's Ergogenic Effects on Cycling: Neuromuscular and Perceptual Factors.
    Black CD; Waddell DE; Gonglach AR
    Med Sci Sports Exerc; 2015 Jun; 47(6):1145-58. PubMed ID: 25211364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strength training improves supramaximal cycling but not anaerobic capacity.
    Minahan C; Wood C
    Eur J Appl Physiol; 2008 Apr; 102(6):659-66. PubMed ID: 18071742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of caffeine on metabolic and cardiovascular functions during sustained light intensity cycling and at rest.
    Engels HJ; Wirth JC; Celik S; Dorsey JL
    Int J Sport Nutr; 1999 Dec; 9(4):361-70. PubMed ID: 10660867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caffeine lowers perceptual response and increases power output during high-intensity cycling.
    Doherty M; Smith P; Hughes M; Davison R
    J Sports Sci; 2004 Jul; 22(7):637-43. PubMed ID: 15370494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists.
    Craig NP; Norton KI; Conyers RA; Woolford SM; Bourdon PC; Stanef T; Walsh CB
    Int J Sports Med; 1995 Nov; 16(8):534-40. PubMed ID: 8776208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen deficit during supramaximal cycling exercise in humans: a new estimation method.
    Adami A; Capelli C
    J Sports Med Phys Fitness; 2013 Feb; 53(1):17-26. PubMed ID: 23470907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Caffeine increases motor output entropy and performance in 4 km cycling time trial.
    Ferreira Viana B; Trajano GS; Ugrinowitsch C; Oliveira Pires F
    PLoS One; 2020; 15(8):e0236592. PubMed ID: 32790792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caffeine and anaerobic performance: ergogenic value and mechanisms of action.
    Davis JK; Green JM
    Sports Med; 2009; 39(10):813-32. PubMed ID: 19757860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users.
    Graham-Paulson T; Perret C; Goosey-Tolfrey V
    Nutrients; 2016 Jun; 8(7):. PubMed ID: 27348000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of caffeine on time to exhaustion in exercise performed below and above the anaerobic threshold.
    Denadai BS; Denadai ML
    Braz J Med Biol Res; 1998 Apr; 31(4):581-5. PubMed ID: 9698813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caffeine effects on VO
    Brietzke C; Asano RY; De Russi de Lima F; Pinheiro FA; Franco-Alvarenga ; Ugrinowitsch C; Pires FO
    Nutr Health; 2017 Dec; 23(4):231-238. PubMed ID: 29214920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of caffeine on the maximal accumulated oxygen deficit and short-term running performance.
    Doherty M
    Int J Sport Nutr; 1998 Jun; 8(2):95-104. PubMed ID: 9637189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.