These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 20082267)

  • 21. Invited review: research contributions from seventy-five years of breeding Line 1 Hereford cattle at Miles City, Montana.
    MacNeil MD
    J Anim Sci; 2009 Aug; 87(8):2489-501. PubMed ID: 19395508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic parameter estimates for serum insulin-like growth factor I concentrations, and body weight and weight gains in Angus beef cattle divergently selected for serum insulin-like growth factor I concentration.
    Davis ME; Simmen RC
    J Anim Sci; 2006 Sep; 84(9):2299-308. PubMed ID: 16908632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic parameters for body weight, hip height, and the ratio of weight to hip height from random regression analyses of Brahman feedlot cattle.
    Riley DG; Coleman SW; Chase CC; Olson TA; Hammond AC
    J Anim Sci; 2007 Jan; 85(1):42-52. PubMed ID: 17179538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct genetic, maternal genetic, and heterozygosity effects on weaning weight in a Colombian multibreed beef cattle population.
    Vergara OD; Ceron-Muñoz MF; Arboleda EM; Orozco Y; Ossa GA
    J Anim Sci; 2009 Feb; 87(2):516-21. PubMed ID: 18952738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth.
    White SN; Casas E; Allan MF; Keele JW; Snelling WM; Wheeler TL; Shackelford SD; Koohmaraie M; Smith TP
    J Anim Sci; 2007 Jan; 85(1):1-10. PubMed ID: 17179534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic relationships among calving ease, calving interval, birth weight, and weaning weight in the Asturiana de los Valles beef cattle breed.
    Gutiérrez JP; Goyache F; Fernández I; Alvarez I; Royo LJ
    J Anim Sci; 2007 Jan; 85(1):69-75. PubMed ID: 17179541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular basis for residual feed intake in beef cattle.
    Moore SS; Mujibi FD; Sherman EL
    J Anim Sci; 2009 Apr; 87(14 Suppl):E41-7. PubMed ID: 18952728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Economic values for production and functional traits and assessment of their influence on genetic improvement in the Boran cattle in Kenya.
    Rewe TO; Indetie D; Ojango JM; Kahi AK
    J Anim Breed Genet; 2006 Feb; 123(1):23-36. PubMed ID: 16420262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of genetic resistance to disease in Bos taurus cattle.
    Morris CA
    Vet J; 2007 Nov; 174(3):481-91. PubMed ID: 17095270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ontogenetic patterns in heritable variation for body size: using random regression models in a wild ungulate population.
    Wilson AJ; Kruuk LE; Coltman DW
    Am Nat; 2005 Dec; 166(6):E177-92. PubMed ID: 16475080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on multiple trait and random regression models for genetic evaluation of beef cattle for growth.
    Bohmanova J; Misztal I; Bertrand JK
    J Anim Sci; 2005 Jan; 83(1):62-7. PubMed ID: 15583043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modern statistical modeling approaches for analyzing repeated-measures data.
    Hayat MJ; Hedlin H
    Nurs Res; 2012; 61(3):188-94. PubMed ID: 22551993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An overview of beef cattle improvement programs in the United States.
    Middleton BK; Gibb JB
    J Anim Sci; 1991 Sep; 69(9):3861-71. PubMed ID: 1938665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quality of breeding value predictions from longitudinal analyses, with application to residual feed intake in pigs.
    David I; Ricard A; Huynh-Tran VH; Dekkers JCM; Gilbert H
    Genet Sel Evol; 2022 May; 54(1):32. PubMed ID: 35562648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal covariance structure of multi-spectral phenotypes and their predictive ability for end-of-season traits in maize.
    Anche MT; Kaczmar NS; Morales N; Clohessy JW; Ilut DC; Gore MA; Robbins KR
    Theor Appl Genet; 2020 Oct; 133(10):2853-2868. PubMed ID: 32613265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Longitudinal analysis of direct and indirect effects on average daily gain in rabbits using a structured antedependence model.
    David I; Sánchez JP; Piles M
    Genet Sel Evol; 2018 May; 50(1):25. PubMed ID: 29747574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic analysis of longitudinal data in beef cattle: a review.
    Speidel SE; Enns RM; Crews DH
    Genet Mol Res; 2010 Jan; 9(1):19-33. PubMed ID: 20082267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic evaluation of growth in a multibreed beef cattle population using random regression-linear spline models.
    Sánchez JP; Misztal I; Aguilar I; Bertrand JK
    J Anim Sci; 2008 Feb; 86(2):267-77. PubMed ID: 17965329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic analysis of calf market weight and carcass traits in Japanese Black cattle.
    Shojo M; Okanishi T; Anada K; Oyama K; Mukai F
    J Anim Sci; 2006 Oct; 84(10):2617-22. PubMed ID: 16971561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of beef cattle longitudinal data applying a nonlinear model.
    Forni S; Piles M; Blasco A; Varona L; Oliveira HN; Lôbo RB; Albuquerque LG
    J Anim Sci; 2007 Dec; 85(12):3189-97. PubMed ID: 17644784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.