These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20082589)

  • 1. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring.
    Pérez-Gandía C; Facchinetti A; Sparacino G; Cobelli C; Gómez EJ; Rigla M; de Leiva A; Hernando ME
    Diabetes Technol Ther; 2010 Jan; 12(1):81-8. PubMed ID: 20082589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series.
    Sparacino G; Zanderigo F; Corazza S; Maran A; Facchinetti A; Cobelli C
    IEEE Trans Biomed Eng; 2007 May; 54(5):931-7. PubMed ID: 17518291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration.
    Zecchin C; Facchinetti A; Sparacino G; De Nicolao G; Cobelli C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1550-60. PubMed ID: 22374344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes.
    Pappada SM; Cameron BD; Rosman PM; Bourey RE; Papadimos TJ; Olorunto W; Borst MJ
    Diabetes Technol Ther; 2011 Feb; 13(2):135-41. PubMed ID: 21284480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical methods for the retrieval and interpretation of continuous glucose monitoring data in diabetes.
    Kovatchev B; Breton M; Clarke W
    Methods Enzymol; 2009; 454():69-86. PubMed ID: 19216923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal glucose models for predicting subcutaneous glucose concentration in humans.
    Gani A; Gribok AV; Lu Y; Ward WK; Vigersky RA; Reifman J
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):157-65. PubMed ID: 19858035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiple local models approach to accuracy improvement in continuous glucose monitoring.
    Barceló-Rico F; Bondia J; Díez JL; Rossetti P
    Diabetes Technol Ther; 2012 Jan; 14(1):74-82. PubMed ID: 21864018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time lag characterization of two continuous glucose monitoring systems.
    Garg SK; Voelmle M; Gottlieb PA
    Diabetes Res Clin Pract; 2010 Mar; 87(3):348-53. PubMed ID: 20022127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the accuracy, reliability, and clinical applicability of continuous glucose monitoring (CGM): Is CGM ready for real time?
    Mazze RS; Strock E; Borgman S; Wesley D; Stout P; Racchini J
    Diabetes Technol Ther; 2009 Jan; 11(1):11-8. PubMed ID: 19132850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    Comput Methods Programs Biomed; 2014; 113(1):144-52. PubMed ID: 24192453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An online self-tunable method to denoise CGM sensor data.
    Facchinetti A; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):634-41. PubMed ID: 19822467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy and Time Delay of Glucose Measurements of Continuous Glucose Monitoring and Bedside Artificial Pancreas During Hyperglycemic and Euglycemic Hyperinsulinemic Glucose Clamp Study.
    Kuroda A; Taniguchi S; Akehi Y; Mori H; Tamaki M; Suzuki R; Otsuka Y; Matsuhisa M
    J Diabetes Sci Technol; 2017 Nov; 11(6):1096-1100. PubMed ID: 28992720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jump neural network for real-time prediction of glucose concentration.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    Methods Mol Biol; 2015; 1260():245-59. PubMed ID: 25502386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling.
    Gani A; Gribok AV; Rajaraman S; Ward WK; Reifman J
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):246-54. PubMed ID: 19272928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell.
    Dassau E; Bequette BW; Buckingham BA; Doyle FJ
    Diabetes Care; 2008 Feb; 31(2):295-300. PubMed ID: 17977934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the glucose sensor error.
    Facchinetti A; Del Favero S; Sparacino G; Castle JR; Ward WK; Cobelli C
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):620-9. PubMed ID: 24108706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced accuracy of continuous glucose monitoring by online extended kalman filtering.
    Facchinetti A; Sparacino G; Cobelli C
    Diabetes Technol Ther; 2010 May; 12(5):353-63. PubMed ID: 20388045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach.
    Guerra S; Facchinetti A; Sparacino G; Nicolao GD; Cobelli C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1658-69. PubMed ID: 22481799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous glucose monitoring has left the station: are you onboard?
    Valentine V
    Diabetes Educ; 2005; 31(5):649-50, 653-4, 656 passim. PubMed ID: 16203850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the clinical information provided by the FreeStyle Navigator continuous interstitial glucose monitor versus traditional blood glucose readings.
    McGarraugh GV; Clarke WL; Kovatchev BP
    Diabetes Technol Ther; 2010 May; 12(5):365-71. PubMed ID: 20388046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.