BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20083130)

  • 1. In utero and in vitro effects of benzene and its metabolites on erythroid differentiation and the role of reactive oxygen species.
    Badham HJ; Winn LM
    Toxicol Appl Pharmacol; 2010 May; 244(3):273-9. PubMed ID: 20083130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In utero exposure to benzene disrupts fetal hematopoietic progenitor cell growth via reactive oxygen species.
    Badham HJ; Winn LM
    Toxicol Sci; 2010 Jan; 113(1):207-15. PubMed ID: 19812361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells.
    Wan J; Winn LM
    Toxicol Appl Pharmacol; 2007 Jul; 222(2):180-9. PubMed ID: 17614109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to phenol and hydroquinone.
    Li Y; Wu XR; Li XF; Suriguga ; Yu CH; Li YR; Yi ZC
    Toxicology; 2013 Oct; 312():108-14. PubMed ID: 23973255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenolic metabolites of benzene inhibited the erythroid differentiation of K562 cells.
    Wu XR; Xue M; Li XF; Wang Y; Wang J; Han QL; Yi ZC
    Toxicol Lett; 2011 Jun; 203(3):190-9. PubMed ID: 21414390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender- and age-specific cytotoxic susceptibility to benzene metabolites in vitro.
    Corti M; Snyder CA
    Toxicol Sci; 1998 Jan; 41(1):42-8. PubMed ID: 9520340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protective role of heme-regulated eIF2α kinase in cadmium-induced toxicity in erythroid cells.
    Wang L; Wang X; Zhang S; Qu G; Liu S
    Food Chem Toxicol; 2013 Dec; 62():880-91. PubMed ID: 24161693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged ethanol ingestion enhances benzene myelotoxicity and lowers urinary concentrations of benzene metabolite levels in CD-1 male mice.
    Marrubini G; Castoldi AF; Coccini T; Manzo L
    Toxicol Sci; 2003 Sep; 75(1):16-24. PubMed ID: 12805641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythroid progenitor cells that survive benzene exposure exhibit greater resistance to the toxic benzene metabolites benzoquinone and hydroquinone.
    Neun DJ; Penn A; Snyder CA
    Arch Toxicol; 1994; 68(9):535-40. PubMed ID: 7998818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzene's toxicity: a consolidated short review of human and animal studies by HA Khan.
    Snyder R
    Hum Exp Toxicol; 2007 Sep; 26(9):687-96. PubMed ID: 17984139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenolic metabolites of benzene induced caspase-dependent cytotoxicities to K562 cells accompanied with decrease in cell surface sialic acids.
    Wang Y; Zhang GY; Han QL; Wang J; Suriguga ; Li Y; Yu CH; Li YR; Yi ZC
    Environ Toxicol; 2014 Dec; 29(12):1437-51. PubMed ID: 23776099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzene metabolites enhance reactive oxygen species generation in HL60 human leukemia cells.
    Shen Y; Shen HM; Shi CY; Ong CN
    Hum Exp Toxicol; 1996 May; 15(5):422-7. PubMed ID: 8735467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of gender, development, pregnancy and ethanol consumption on the hematotoxicity of inhaled 10 ppm benzene.
    Corti M; Snyder CA
    Arch Toxicol; 1996; 70(3-4):209-17. PubMed ID: 8825679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo.
    Liang B; Chen Y; Yuan W; Qin F; Zhang Q; Deng N; Liu X; Ma X; Zhang X; Zhang B; Deng Q; Huang M; Tang H; Liu L; Chen W; Xiao Y
    Arch Toxicol; 2018 Jan; 92(1):259-272. PubMed ID: 28733890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of benzene and the metabolites phenol and catechol on c-Myb and Pim-1 signaling in HD3 cells.
    Wan J; Winn LM
    Toxicol Appl Pharmacol; 2004 Dec; 201(2):194-201. PubMed ID: 15541759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility.
    Neun DJ; Penn A; Snyder CA
    Arch Toxicol; 1992; 66(1):11-7. PubMed ID: 1580791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.
    Soni S; Bala S; Hanspal M
    Blood Cells Mol Dis; 2008; 41(2):141-7. PubMed ID: 18501646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of c-MYB in benzene-initiated toxicity.
    Wan J; Badham HJ; Winn L
    Chem Biol Interact; 2005 May; 153-154():171-8. PubMed ID: 15935814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential gene expression profiles of human leukemia cell lines exposed to benzene and its metabolites.
    Sarma SN; Kim YJ; Ryu JC
    Environ Toxicol Pharmacol; 2011 Sep; 32(2):285-95. PubMed ID: 21843810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of granulocytic and erythroid progenitor cells are affected differently by short-term, low-level benzene exposure.
    Dempster AM; Snyder CA
    Arch Toxicol; 1991; 65(7):556-61. PubMed ID: 1781737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.