BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20083133)

  • 1. Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites.
    Haroun AA; Migonney V
    Int J Biol Macromol; 2010 Apr; 46(3):310-6. PubMed ID: 20083133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite.
    Nayar S; Sinha A
    Colloids Surf B Biointerfaces; 2004 May; 35(1):29-32. PubMed ID: 15261052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process.
    Prashantha K; Rashmi BJ; Venkatesha TV; Lee JH
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):340-4. PubMed ID: 16503415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications.
    Kumar GS; Girija EK; Thamizhavel A; Yokogawa Y; Kalkura SN
    J Colloid Interface Sci; 2010 Sep; 349(1):56-62. PubMed ID: 20541216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying.
    Sundaram J; Durance TD; Wang R
    Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.
    Mohamed KR; Beherei HH; El Bassyouni GT; El Mahallawy N
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4126-32. PubMed ID: 23910323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.
    Ning C; Zhou Y
    Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement.
    Wong CT; Lu WW; Chan WK; Cheung KM; Luk KD; Lu DS; Rabie AB; Deng LF; Leong JC
    J Biomed Mater Res A; 2004 Mar; 68(3):513-21. PubMed ID: 14762931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements.
    Boesel LF; Cachinho SC; Fernandes MH; Reis RL
    Acta Biomater; 2007 Mar; 3(2):175-82. PubMed ID: 17166784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of novel polymer-apatite nanocomposite fibers.
    Dimitrievska S; Petit A; Ajji A; Bureau MN; Yahia L
    J Biomed Mater Res A; 2008 Jan; 84(1):44-53. PubMed ID: 17600325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.