These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 20083133)
1. Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Haroun AA; Migonney V Int J Biol Macromol; 2010 Apr; 46(3):310-6. PubMed ID: 20083133 [TBL] [Abstract][Full Text] [Related]
2. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite. Nayar S; Sinha A Colloids Surf B Biointerfaces; 2004 May; 35(1):29-32. PubMed ID: 15261052 [TBL] [Abstract][Full Text] [Related]
3. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process. Prashantha K; Rashmi BJ; Venkatesha TV; Lee JH Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):340-4. PubMed ID: 16503415 [TBL] [Abstract][Full Text] [Related]
4. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications. Kumar GS; Girija EK; Thamizhavel A; Yokogawa Y; Kalkura SN J Colloid Interface Sci; 2010 Sep; 349(1):56-62. PubMed ID: 20541216 [TBL] [Abstract][Full Text] [Related]
7. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Sundaram J; Durance TD; Wang R Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862 [TBL] [Abstract][Full Text] [Related]
8. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold. Srivastava A; Kumar A J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279 [TBL] [Abstract][Full Text] [Related]
10. Gel-derived bioglass as a compound of hydroxyapatite composites. Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials. Mohamed KR; Beherei HH; El Bassyouni GT; El Mahallawy N Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4126-32. PubMed ID: 23910323 [TBL] [Abstract][Full Text] [Related]
12. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
13. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Ning C; Zhou Y Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711 [TBL] [Abstract][Full Text] [Related]
14. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. Wong CT; Lu WW; Chan WK; Cheung KM; Luk KD; Lu DS; Rabie AB; Deng LF; Leong JC J Biomed Mater Res A; 2004 Mar; 68(3):513-21. PubMed ID: 14762931 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes. Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637 [TBL] [Abstract][Full Text] [Related]
16. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Gu YW; Khor KA; Cheang P Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903 [TBL] [Abstract][Full Text] [Related]
17. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
18. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements. Boesel LF; Cachinho SC; Fernandes MH; Reis RL Acta Biomater; 2007 Mar; 3(2):175-82. PubMed ID: 17166784 [TBL] [Abstract][Full Text] [Related]
19. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide. Chang MC; Kim UK; Douglas WH J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility of novel polymer-apatite nanocomposite fibers. Dimitrievska S; Petit A; Ajji A; Bureau MN; Yahia L J Biomed Mater Res A; 2008 Jan; 84(1):44-53. PubMed ID: 17600325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]