BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 20083353)

  • 1. Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy.
    Young NP; van Huis MA; Zandbergen HW; Xu H; Kirkland AI
    Ultramicroscopy; 2010 Apr; 110(5):506-16. PubMed ID: 20083353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-terminal electric transport measurements on gold nano-particles combined with ex situ TEM inspection.
    Gao B; Osorio EA; Babaei Gaven K; van der Zant HS
    Nanotechnology; 2009 Oct; 20(41):415207. PubMed ID: 19762943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy.
    Gai PL; Boyes ED
    Microsc Res Tech; 2009 Mar; 72(3):153-64. PubMed ID: 19140163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specimen preparation of porous Au for transmission electron microscopy using cryo ion-milling.
    Tanabe T
    J Electron Microsc (Tokyo); 2011; 60(1):35-7. PubMed ID: 20923871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission electron microscopy with a liquid flow cell.
    Klein KL; Anderson IM; de Jonge N
    J Microsc; 2011 May; 242(2):117-23. PubMed ID: 21250996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ high-resolution transmission electron microscopy of photocatalytic reactions by excited electrons in ionic liquid.
    Yoshida K; Nozaki T; Hirayama T; Tanaka N
    J Electron Microsc (Tokyo); 2007 Oct; 56(5):177-80. PubMed ID: 17947794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of silver and gold nanoparticles in ionic liquid.
    Singh P; Kumari K; Katyal A; Kalra R; Chandra R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):218-20. PubMed ID: 19272833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single laser pulse induced aggregation of gold nanoparticles.
    Matsuo N; Muto H; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2007 Dec; 9(45):6027-31. PubMed ID: 18004417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior.
    Ascencio JA; Liu HB; Pal U; Medina A; Wang ZL
    Microsc Res Tech; 2006 Jul; 69(7):522-30. PubMed ID: 16732542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth.
    Smitha SL; Philip D; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):735-9. PubMed ID: 19744880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.
    Brantley WA; Guo W; Clark WA; Iijima M
    Dent Mater; 2008 Feb; 24(2):204-10. PubMed ID: 17561249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltammetric monitoring of gold nanoparticle formation facilitated by glycyl-L-tyrosine: relation to electronic spectra and transmission electron microscopy images.
    Booth JM; Bhargava SK; Bond AM; O'Mullane AP
    J Phys Chem B; 2006 Jun; 110(25):12419-26. PubMed ID: 16800568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical assemblies of gold nanoparticles at the surface of a film formed by a bridged silsesquioxane containing pendant dodecyl chains.
    Gómez ML; Hoppe CE; Zucchi IA; Williams RJ; Giannotti MI; López-Quintela MA
    Langmuir; 2009 Jan; 25(2):1210-7. PubMed ID: 19105745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs.
    Mayhew TM; Mühlfeld C; Vanhecke D; Ochs M
    Ann Anat; 2009 Apr; 191(2):153-70. PubMed ID: 19135344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer-protected gold nanoparticles by the self-assembly of micellar poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer.
    Azzam T; Eisenberg A
    Langmuir; 2007 Feb; 23(4):2126-32. PubMed ID: 17279704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison study of the solution phase versus solid phase place exchange reactions in the controlled functionalization of gold nanoparticles.
    Shaffer AW; Worden JG; Huo Q
    Langmuir; 2004 Sep; 20(19):8343-51. PubMed ID: 15350112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.