These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 200835)

  • 21. Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae.
    Shi Z; Buntel CJ; Griffin JH
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7370-4. PubMed ID: 8041797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of squalene synthase gene disruption on synthesis of polyprenols in Saccharomyces cerevisiae.
    Grabowska D; Karst F; Szkopińska A
    FEBS Lett; 1998 Sep; 434(3):406-8. PubMed ID: 9742963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase.
    Chambon C; Ladeveze V; Servouse M; Blanchard L; Javelot C; Vladescu B; Karst F
    Lipids; 1991 Aug; 26(8):633-6. PubMed ID: 1779710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Construction of Saccharomyces cerevisiae haploid mutant deficient in lanosterol synthase gene].
    Gao LL; Wang QH; Liang HC; Gong T; Yang JL; Zhu P
    Yao Xue Xue Bao; 2014 May; 49(5):742-6. PubMed ID: 25151749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidosqualene cyclization in human placenta. An easy step of sterol biosynthesis.
    Tabacik C; Astruc M; Descomps B; de Paulet AC
    Biochim Biophys Acta; 1975 Sep; 398(3):490-5. PubMed ID: 1236745
    [No Abstract]   [Full Text] [Related]  

  • 26. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae.
    Jahnke L; Klein HP
    J Bacteriol; 1983 Aug; 155(2):488-92. PubMed ID: 6348021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli.
    Katabami A; Li L; Iwasaki M; Furubayashi M; Saito K; Umeno D
    J Biosci Bioeng; 2015 Feb; 119(2):165-71. PubMed ID: 25282635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The squalene synthetase active site. Catalytic acceptance of 7- and 11- demethylfarnesyl pyrophosphates.
    Ortiz de Montellano PR; Boparai AS
    Biochem Biophys Res Commun; 1976 May; 76(2):520-5. PubMed ID: 800341
    [No Abstract]   [Full Text] [Related]  

  • 30. Reduction of background interference in the spectrophotometric assay of mevalonate kinase.
    Song L
    Anal Bioanal Chem; 2006 Mar; 384(6):1444-5. PubMed ID: 16477420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.
    Garaiová M; Zambojová V; Simová Z; Griač P; Hapala I
    FEMS Yeast Res; 2014 Mar; 14(2):310-23. PubMed ID: 24119181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide sequence of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase.
    Oulmouden A; Karst F
    Curr Genet; 1991 Jan; 19(1):9-14. PubMed ID: 1645230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triglyceride deficiency and diacylglycerol kinase1 activity lead to the upregulation of mevalonate pathway in yeast: A study for the development of potential yeast platform for improved production of triterpenoid.
    Ranganathan PR; Nawada N; Narayanan AK; Rao DKV
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jun; 1865(6):158661. PubMed ID: 32058036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae.
    Casey WM; Keesler GA; Parks LW
    J Bacteriol; 1992 Nov; 174(22):7283-8. PubMed ID: 1429452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast.
    Lorenz RT; Parks LW
    J Bacteriol; 1987 Aug; 169(8):3707-11. PubMed ID: 3301810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei.
    Piłsyk S; Perlińska-Lenart U; Górka-Nieć W; Graczyk S; Antosiewicz B; Zembek P; Palamarczyk G; Kruszewska JS
    Gene; 2014 Jul; 544(2):114-22. PubMed ID: 24793581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae.
    Kennedy MA; Bard M
    Biochim Biophys Acta; 2001 Jan; 1517(2):177-89. PubMed ID: 11342098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae.
    Watson PF; Rose ME; Kelly SL
    J Med Vet Mycol; 1988 Jun; 26(3):153-62. PubMed ID: 3050008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase.
    Liu YT; Hu TC; Chang CH; Shie WS; Wu TK
    Org Lett; 2012 Oct; 14(20):5222-5. PubMed ID: 23043506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination.
    Kamimura N; Hidaka M; Masaki H; Uozumi T
    Appl Microbiol Biotechnol; 1994 Nov; 42(2-3):353-7. PubMed ID: 7765777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.