These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20084)

  • 1. A relation between amino acid hydrophobicity and rate of uptake in Escherichia coli.
    Sprott GD; Wood JM; Martin WG; Schneider H
    Biochem Biophys Res Commun; 1977 Jun; 76(4):1099-106. PubMed ID: 20084
    [No Abstract]   [Full Text] [Related]  

  • 2. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling action of amytal in membrane vesicles from Escherichia coli.
    Boonstra J; Ottema S; Sips HJ; Konings WN
    Eur J Biochem; 1979 Dec; 102(2):383-8. PubMed ID: 393507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine.
    Kaczorowski G; Shaw L; Laura R; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8921-30. PubMed ID: 1104610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic transport in Escherichia coli membrane vesicles.
    Boonstra J; Huttunen MT; Konings WN
    J Biol Chem; 1975 Sep; 250(17):6792-8. PubMed ID: 1099094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 7. Coupling of glycine and alanine transport to respiration in cells of Escherichia coli.
    Sprott GD; Dimock K; Martin WG; Schneider H
    Can J Biochem; 1975 Mar; 53(3):262-8. PubMed ID: 1092436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular biology and energetics of membrane transport.
    Kaback HR
    J Cell Physiol; 1976 Dec; 89(4):575-93. PubMed ID: 13080
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium/proton and sodium/proton antiport systems in Escherichia coli.
    Tsuchiya T; Takeda K
    J Biochem; 1979 Apr; 85(4):943-51. PubMed ID: 37247
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of colicin A and staphylococcin 1580 on amino acid uptake into membrane vesicles of Escherichia coli and staphylococcus aureus.
    Jetten AM; Vogels GD
    Biochim Biophys Acta; 1973 Jul; 311(4):483-95. PubMed ID: 4147116
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential.
    Hirata H; Altendorf K; Harold FM
    J Biol Chem; 1974 May; 249(9):2939-45. PubMed ID: 4133356
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationship between oxygen-induced proton efflux and membrane energization in cells of Escherichia coli.
    Gould JM; Cramer WA
    J Biol Chem; 1977 Aug; 252(16):5875-82. PubMed ID: 18476
    [No Abstract]   [Full Text] [Related]  

  • 13. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H
    Methods Enzymol; 1979; 55():676-80. PubMed ID: 379504
    [No Abstract]   [Full Text] [Related]  

  • 14. Relationship between steps in 8-anilino-1-naphthalene sulfonate (ANS) fluorescence and changes in the energized membrane state and in intracellular and extracellular adenosine 5'-triphosphate (ATP) levels following bacteriophage T5 infection of Escherichia coli.
    Braun V; Oldmixon E
    J Supramol Struct; 1979; 10(3):329-47. PubMed ID: 158681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes in the cell membrane of lambda-lysogenic Escherichia coli induced by colicin E2.
    Yamamoto H; Beppu T; Arima K
    Biochem Biophys Res Commun; 1977 Feb; 74(3):1077-82. PubMed ID: 320975
    [No Abstract]   [Full Text] [Related]  

  • 16. Changes in fluorescence of 8-anilino-1-naphthalene sulfonate after bacteriophage T5 infection of Escherichia coli. Initial fluorescence rise coincides with onset of rubidium efflux.
    Oldmixon E; Braun V
    Biochim Biophys Acta; 1978 Jan; 506(1):111-8. PubMed ID: 339954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transduction in Escherichia coli. The effect of chaotropic agents on energy coupling in everted membrane vesicles from aerobic and anaerobic cultures.
    Hasan SM; Rosen BP
    Biochim Biophys Acta; 1977 Feb; 459(2):225-40. PubMed ID: 138439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of colicin E1 on proton extrusion and the H+/0 ration in Escherichia coli.
    Gould JM; Cramer WA; van Thienen G
    Biochem Biophys Res Commun; 1976 Oct; 72(4):1519-25. PubMed ID: 11793
    [No Abstract]   [Full Text] [Related]  

  • 19. Energetics and mechanisms of lactose translocation in isolated membrane vesicles of Escherichia coli.
    Kaczorowski GJ; Robertson DE; Garcia ML; Padan E; Patel L; LeBlanc G; Kaback HR
    Ann N Y Acad Sci; 1980; 358():307-21. PubMed ID: 7011148
    [No Abstract]   [Full Text] [Related]  

  • 20. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli.
    Berger EA; Heppel LA
    J Biol Chem; 1974 Dec; 249(24):7747-55. PubMed ID: 4279250
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.