These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 20084102)
1. Structural biology of human H3K9 methyltransferases. Wu H; Min J; Lunin VV; Antoshenko T; Dombrovski L; Zeng H; Allali-Hassani A; Campagna-Slater V; Vedadi M; Arrowsmith CH; Plotnikov AN; Schapira M PLoS One; 2010 Jan; 5(1):e8570. PubMed ID: 20084102 [TBL] [Abstract][Full Text] [Related]
2. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Satish M; Nivya MA; Abhishek S; Nakarakanti NK; Shivani D; Vani MV; Rajakumara E Proteins; 2018 Jan; 86(1):21-34. PubMed ID: 29024026 [TBL] [Abstract][Full Text] [Related]
3. Heterodimerization of H3K9 histone methyltransferases G9a and GLP activates methyl reading and writing capabilities. Sanchez NA; Kallweit LM; Trnka MJ; Clemmer CL; Al-Sady B J Biol Chem; 2021 Nov; 297(5):101276. PubMed ID: 34619147 [TBL] [Abstract][Full Text] [Related]
4. Activity and specificity of the human SUV39H2 protein lysine methyltransferase. Schuhmacher MK; Kudithipudi S; Kusevic D; Weirich S; Jeltsch A Biochim Biophys Acta; 2015 Jan; 1849(1):55-63. PubMed ID: 25459750 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Chang Y; Zhang X; Horton JR; Upadhyay AK; Spannhoff A; Liu J; Snyder JP; Bedford MT; Cheng X Nat Struct Mol Biol; 2009 Mar; 16(3):312-7. PubMed ID: 19219047 [TBL] [Abstract][Full Text] [Related]
6. Structural studies of a four-MBT repeat protein MBTD1. Eryilmaz J; Pan P; Amaya MF; Allali-Hassani A; Dong A; Adams-Cioaba MA; Mackenzie F; Vedadi M; Min J PLoS One; 2009 Oct; 4(10):e7274. PubMed ID: 19841675 [TBL] [Abstract][Full Text] [Related]
7. Structural and histone binding ability characterizations of human PWWP domains. Wu H; Zeng H; Lam R; Tempel W; Amaya MF; Xu C; Dombrovski L; Qiu W; Wang Y; Min J PLoS One; 2011; 6(6):e18919. PubMed ID: 21720545 [TBL] [Abstract][Full Text] [Related]
8. A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Collins R; Cheng X Nucleic Acids Res; 2010 Jun; 38(11):3503-11. PubMed ID: 20159995 [TBL] [Abstract][Full Text] [Related]
9. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. Ueda J; Tachibana M; Ikura T; Shinkai Y J Biol Chem; 2006 Jul; 281(29):20120-8. PubMed ID: 16702210 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of the N- and C-terminus of mammalian G9a histone H3 methyltransferase. Estève PO; Patnaik D; Chin HG; Benner J; Teitell MA; Pradhan S Nucleic Acids Res; 2005; 33(10):3211-23. PubMed ID: 15939934 [TBL] [Abstract][Full Text] [Related]
11. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. Rellos P; Pike AC; Niesen FH; Salah E; Lee WH; von Delft F; Knapp S PLoS Biol; 2010 Jul; 8(7):e1000426. PubMed ID: 20668654 [TBL] [Abstract][Full Text] [Related]
13. Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: a molecular dynamics study. Ramya Chandar Charles M; Hsieh HP; Selvaraj Coumar M J Biomol Struct Dyn; 2019 Jul; 37(10):2581-2592. PubMed ID: 30047835 [TBL] [Abstract][Full Text] [Related]
14. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Collins RE; Northrop JP; Horton JR; Lee DY; Zhang X; Stallcup MR; Cheng X Nat Struct Mol Biol; 2008 Mar; 15(3):245-50. PubMed ID: 18264113 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. Collins RE; Tachibana M; Tamaru H; Smith KM; Jia D; Zhang X; Selker EU; Shinkai Y; Cheng X J Biol Chem; 2005 Feb; 280(7):5563-70. PubMed ID: 15590646 [TBL] [Abstract][Full Text] [Related]
17. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis. Chin HG; Patnaik D; Estève PO; Jacobsen SE; Pradhan S Biochemistry; 2006 Mar; 45(10):3272-84. PubMed ID: 16519522 [TBL] [Abstract][Full Text] [Related]
18. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Saha N; Muntean AG Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188498. PubMed ID: 33373647 [TBL] [Abstract][Full Text] [Related]
19. Predominant expression of H3K9 methyltransferases in prehypertrophic and hypertrophic chondrocytes during mouse growth plate cartilage development. Ideno H; Shimada A; Imaizumi K; Kimura H; Abe M; Nakashima K; Nifuji A Gene Expr Patterns; 2013; 13(3-4):84-90. PubMed ID: 23333759 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. Kwon T; Chang JH; Kwak E; Lee CW; Joachimiak A; Kim YC; Lee J; Cho Y EMBO J; 2003 Jan; 22(2):292-303. PubMed ID: 12514135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]