These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 20084459)
1. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Navarro-Noya YE; Jan-Roblero J; González-Chávez Mdel C; Hernández-Gama R; Hernández-Rodríguez C Antonie Van Leeuwenhoek; 2010 May; 97(4):335-49. PubMed ID: 20084459 [TBL] [Abstract][Full Text] [Related]
2. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
3. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. Lee SH; Ka JO; Cho JC FEMS Microbiol Lett; 2008 Aug; 285(2):263-9. PubMed ID: 18557943 [TBL] [Abstract][Full Text] [Related]
4. Phylogenetic diversity of Acidobacteria in a former agricultural soil. Kielak A; Pijl AS; van Veen JA; Kowalchuk GA ISME J; 2009 Mar; 3(3):378-82. PubMed ID: 19020558 [TBL] [Abstract][Full Text] [Related]
5. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. Teixeira LC; Peixoto RS; Cury JC; Sul WJ; Pellizari VH; Tiedje J; Rosado AS ISME J; 2010 Aug; 4(8):989-1001. PubMed ID: 20357834 [TBL] [Abstract][Full Text] [Related]
6. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
7. Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Aguirre-Garrido JF; Montiel-Lugo D; Hernández-Rodríguez C; Torres-Cortes G; Millán V; Toro N; Martínez-Abarca F; Ramírez-Saad HC Antonie Van Leeuwenhoek; 2012 May; 101(4):891-904. PubMed ID: 22307841 [TBL] [Abstract][Full Text] [Related]
8. Bacterial diversity at different depths in lead-zinc mine tailings as revealed by 16S rRNA gene libraries. Zhang HB; Shi W; Yang MX; Sha T; Zhao ZW J Microbiol; 2007 Dec; 45(6):479-84. PubMed ID: 18176528 [TBL] [Abstract][Full Text] [Related]
9. Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. Santos F; Peña A; Nogales B; Soria-Soria E; Del Cura MA; González-Martín JA; Antón J Syst Appl Microbiol; 2010 Jun; 33(4):209-21. PubMed ID: 20409657 [TBL] [Abstract][Full Text] [Related]
10. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275 [TBL] [Abstract][Full Text] [Related]
12. Bacterial diversity in the rhizosphere of Proteaceae species. Stafford WH; Baker GC; Brown SA; Burton SG; Cowan DA Environ Microbiol; 2005 Nov; 7(11):1755-68. PubMed ID: 16232290 [TBL] [Abstract][Full Text] [Related]
13. Phylogenetic diversity of bacteria in an earth-cave in Guizhou province, southwest of China. Zhou J; Gu Y; Zou C; Mo M J Microbiol; 2007 Apr; 45(2):105-12. PubMed ID: 17483794 [TBL] [Abstract][Full Text] [Related]
14. Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development. Andreote FD; Mendes R; Dini-Andreote F; Rossetto PB; Labate CA; Pizzirani-Kleiner AA; van Elsas JD; Azevedo JL; Araújo WL Antonie Van Leeuwenhoek; 2008 May; 93(4):415-24. PubMed ID: 18181027 [TBL] [Abstract][Full Text] [Related]
15. Diversity rankings among bacterial lineages in soil. Youssef NH; Elshahed MS ISME J; 2009 Mar; 3(3):305-13. PubMed ID: 18987677 [TBL] [Abstract][Full Text] [Related]
16. Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene contamination. George IF; Liles MR; Hartmann M; Ludwig W; Goodman RM; Agathos SN FEMS Microbiol Lett; 2009 Jun; 296(2):159-66. PubMed ID: 19459956 [TBL] [Abstract][Full Text] [Related]
17. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Gremion F; Chatzinotas A; Harms H Environ Microbiol; 2003 Oct; 5(10):896-907. PubMed ID: 14510843 [TBL] [Abstract][Full Text] [Related]
18. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. Costa R; Götz M; Mrotzek N; Lottmann J; Berg G; Smalla K FEMS Microbiol Ecol; 2006 May; 56(2):236-49. PubMed ID: 16629753 [TBL] [Abstract][Full Text] [Related]
19. Prokaryotic diversity in continuous cropping and rotational cropping soybean soil. Tang H; Xiao C; Ma J; Yu M; Li Y; Wang G; Zhang L FEMS Microbiol Lett; 2009 Sep; 298(2):267-73. PubMed ID: 19663913 [TBL] [Abstract][Full Text] [Related]
20. Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils. da Rocha UN; van Elsas JD; van Overbeek LS J Microbiol Methods; 2010 Nov; 83(2):141-8. PubMed ID: 20801169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]