These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 20084509)
21. Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Abaide ER; Ugalde G; Di Luccio M; Moreira RFPM; Tres MV; Zabot GL; Mazutti MA Bioresour Technol; 2019 Jan; 272():510-520. PubMed ID: 30391844 [TBL] [Abstract][Full Text] [Related]
22. Customized optimization of cellulase mixtures for differently pretreated rice straw. Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288 [TBL] [Abstract][Full Text] [Related]
23. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. Ehsanipour M; Suko AV; Bura R J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903 [TBL] [Abstract][Full Text] [Related]
24. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast. Palnitkar SS; Lachke AH Appl Biochem Biotechnol; 1990 Nov; 26(2):151-8. PubMed ID: 2091527 [TBL] [Abstract][Full Text] [Related]
25. Enhanced lactic acid production from P Liu H; Liu X; Jiang H; Liang C; Zhang ZC Bioprocess Biosyst Eng; 2021 Oct; 44(10):2153-2166. PubMed ID: 34057575 [TBL] [Abstract][Full Text] [Related]
26. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis. Hasegawa M; Yamane D; Funato K; Yoshida A; Sambongi Y J Biosci Bioeng; 2018 Mar; 125(3):316-319. PubMed ID: 29089240 [TBL] [Abstract][Full Text] [Related]
27. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor. Cubas-Cano E; González-Fernández C; Ballesteros M; Tomás-Pejó E Biotechnol Prog; 2019 Jan; 35(1):e2739. PubMed ID: 30378762 [TBL] [Abstract][Full Text] [Related]
28. Hybrid process for ethanol production from rice straw. Chadha BS; Kanwar SS; Saini HS; Garcha HS Acta Microbiol Immunol Hung; 1995; 42(1):53-9. PubMed ID: 7620813 [TBL] [Abstract][Full Text] [Related]
29. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
30. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration. Sasaki K; Sasaki D; Sakihama Y; Teramura H; Yamada R; Hasunuma T; Ogino C; Kondo A Bioresour Technol; 2013 Nov; 147():84-88. PubMed ID: 23994307 [TBL] [Abstract][Full Text] [Related]
31. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
32. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131 [TBL] [Abstract][Full Text] [Related]
33. Biocatalytic pretreatment of rice straw by ligninolytic enzymes produced by newly isolated Micrococcus unnanensis strain B4 for downstream cellulolytic saccharification. Mahanty A; Giri S; Kar A; Ghosh S J Gen Appl Microbiol; 2022 Nov; 68(4):184-192. PubMed ID: 35598987 [TBL] [Abstract][Full Text] [Related]
34. Optimization of sodium hydroxide pretreatment and enzyme loading for efficient hydrolysis of rice straw to improve succinate production by metabolically engineered Escherichia coli KJ122 under simultaneous saccharification and fermentation. Sawisit A; Jampatesh S; Jantama SS; Jantama K Bioresour Technol; 2018 Jul; 260():348-356. PubMed ID: 29649727 [TBL] [Abstract][Full Text] [Related]
35. Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. Abbi M; Kuhad RC; Singh A J Ind Microbiol; 1996 Jul; 17(1):20-3. PubMed ID: 8987687 [TBL] [Abstract][Full Text] [Related]
36. Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system. Narra M; Balasubramanian V; James JP Bioprocess Biosyst Eng; 2016 Jun; 39(6):993-1003. PubMed ID: 26941245 [TBL] [Abstract][Full Text] [Related]
37. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Nguyen TA; Kim KR; Han SJ; Cho HY; Kim JW; Park SM; Park JC; Sim SJ Bioresour Technol; 2010 Oct; 101(19):7432-8. PubMed ID: 20466540 [TBL] [Abstract][Full Text] [Related]
38. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184 [TBL] [Abstract][Full Text] [Related]
39. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367. Guo T; Zhang L; Xin Y; Xu Z; He H; Kong J Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842545 [No Abstract] [Full Text] [Related]
40. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Zhou J; Ouyang J; Xu Q; Zheng Z Bioresour Technol; 2016 Dec; 222():431-438. PubMed ID: 27750196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]