These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20084533)
1. Pulsed EPR investigations of the Mo(V) centers of the R55Q and R55M variants of sulfite dehydrogenase from Starkeya novella. Rapson TD; Astashkin AV; Johnson-Winters K; Bernhardt PV; Kappler U; Raitsimring AM; Enemark JH J Biol Inorg Chem; 2010 May; 15(4):505-14. PubMed ID: 20084533 [TBL] [Abstract][Full Text] [Related]
2. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine. Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119 [TBL] [Abstract][Full Text] [Related]
3. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD; Kappler U; Hanson GR; Bernhardt PV Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and structural evidence for the importance of Tyr236 for the integrity of the Mo active site in a bacterial sulfite dehydrogenase. Kappler U; Bailey S; Feng C; Honeychurch MJ; Hanson GR; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2006 Aug; 45(32):9696-705. PubMed ID: 16893171 [TBL] [Abstract][Full Text] [Related]
5. Molecular basis for enzymatic sulfite oxidation: how three conserved active site residues shape enzyme activity. Bailey S; Rapson T; Johnson-Winters K; Astashkin AV; Enemark JH; Kappler U J Biol Chem; 2009 Jan; 284(4):2053-63. PubMed ID: 19004819 [TBL] [Abstract][Full Text] [Related]
6. Pulsed EPR studies of a bacterial sulfite-oxidizing enzyme with pH-invariant hyperfine interactions from exchangeable protons. Raitsimring AM; Kappler U; Feng C; Astashkin AV; Enemark JH Inorg Chem; 2005 Oct; 44(21):7283-5. PubMed ID: 16212344 [TBL] [Abstract][Full Text] [Related]
7. Exchangeable oxygens in the vicinity of the molybdenum center of the high-pH form of sulfite oxidase and sulfite dehydrogenase. Astashkin AV; Klein EL; Ganyushin D; Johnson-Winters K; Neese F; Kappler U; Enemark JH Phys Chem Chem Phys; 2009 Aug; 11(31):6733-42. PubMed ID: 19639147 [TBL] [Abstract][Full Text] [Related]
8. Structure of the active site of sulfite dehydrogenase from Starkeya novella. Doonan CJ; Kappler U; George GN Inorg Chem; 2006 Sep; 45(18):7488-92. PubMed ID: 16933953 [TBL] [Abstract][Full Text] [Related]
10. The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions. Hsiao JC; McGrath AP; Kielmann L; Kalimuthu P; Darain F; Bernhardt PV; Harmer J; Lee M; Meyers K; Maher MJ; Kappler U Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):19-27. PubMed ID: 28986298 [TBL] [Abstract][Full Text] [Related]
11. Structural studies of the molybdenum center of the pathogenic R160Q mutant of human sulfite oxidase by pulsed EPR spectroscopy and 17O and 33S labeling. Astashkin AV; Johnson-Winters K; Klein EL; Feng C; Wilson HL; Rajagopalan KV; Raitsimring AM; Enemark JH J Am Chem Soc; 2008 Jul; 130(26):8471-80. PubMed ID: 18529001 [TBL] [Abstract][Full Text] [Related]
12. Structures of the Mo(V) forms of sulfite oxidase from Arabidopsis thaliana by pulsed EPR spectroscopy. Astashkin AV; Hood BL; Feng C; Hille R; Mendel RR; Raitsimring AM; Enemark JH Biochemistry; 2005 Oct; 44(40):13274-81. PubMed ID: 16201753 [TBL] [Abstract][Full Text] [Related]
13. Direct catalytic electrochemistry of sulfite dehydrogenase: mechanistic insights and contrasts with related Mo enzymes. Rapson TD; Kappler U; Bernhardt PV Biochim Biophys Acta; 2008 Oct; 1777(10):1319-25. PubMed ID: 18601898 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Johnson-Winters K; Tollin G; Enemark JH Biochemistry; 2010 Aug; 49(34):7242-54. PubMed ID: 20666399 [TBL] [Abstract][Full Text] [Related]
15. Intramolecular electron transfer in a bacterial sulfite dehydrogenase. Feng C; Kappler U; Tollin G; Enemark JH J Am Chem Soc; 2003 Dec; 125(48):14696-7. PubMed ID: 14640631 [TBL] [Abstract][Full Text] [Related]
16. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase. Reschke S; Niks D; Wilson H; Sigfridsson KG; Haumann M; Rajagopalan KV; Hille R; Leimkühler S Biochemistry; 2013 Nov; 52(46):8295-303. PubMed ID: 24147957 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the coordination structures of the molybdenum(v) sites of sulfite oxidizing enzymes by pulsed EPR spectroscopy. Enemark JH; Astashkin AV; Raitsimring AM Dalton Trans; 2006 Aug; (29):3501-14. PubMed ID: 16855750 [TBL] [Abstract][Full Text] [Related]
18. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes(). Klein EL; Astashkin AV; Raitsimring AM; Enemark JH Coord Chem Rev; 2013 Jan; 257(1):110-118. PubMed ID: 23440026 [TBL] [Abstract][Full Text] [Related]
19. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy. Enemark JH; Astashkin AV; Raitsimring AM Biochem Soc Trans; 2008 Dec; 36(Pt 6):1129-33. PubMed ID: 19021510 [TBL] [Abstract][Full Text] [Related]
20. Pulsed electron paramagnetic resonance spectroscopy of (33)S-labeled molybdenum cofactor in catalytically active bioengineered sulfite oxidase. Klein EL; Belaidi AA; Raitsimring AM; Davis AC; Krämer T; Astashkin AV; Neese F; Schwarz G; Enemark JH Inorg Chem; 2014 Jan; 53(2):961-71. PubMed ID: 24387640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]